EfficientNet论文笔记

EfficientNet论文笔记

通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。

数据集效果小于resolution怎么办?

EfficientNet---b0框架

表格中每个MBConv后会跟一个数字1或6,这里的1或6就是倍率因子n,即MBConv中第一个 1x1的卷积层会将输入特征矩阵的channels扩充为n倍 ,其中k3x3或k5x5表示MBConv中Depthwise Conv所采用的卷积核大小。Channels表示通过该Stage后输出特征矩阵的Channels。

MBConv结构

Swish激活函数+SE模块

  1. 第一个升维的1x1卷积层,它的卷积核个数是输入特征矩阵channel的n倍,当n等于1不需要该层。
  2. 仅当输入MBConv结构的特征矩阵与输出的特征矩阵shape相同时才使用。在源码实现中只有使用shortcut的时候才有Dropout层。

SE模块:

第一个激活函数替换成Swish激活函数

其他版本的详细参数:

  1. input_size代表训练网络时输入网络的图像大小
  2. width_coefficient代表channel维度上的倍率因子,比如在 EfficientNetB0中Stage1的3x3卷积层所使用的卷积核个数是32,那么在B6中就是 32 × 1.8 = 57.6接着取整到离它最近的8的整数倍即56,其它Stage同理(加速运算)。
  3. depth_coefficient代表depth维度上的倍率因子(仅针对Stage2到Stage8),比如在EfficientNetB0中Stage7的 Li=4,那么在B6中就是 4(block) × 2.6 = 10.4 接着向上取整即11
  4. drop_connect_rate是在MBConv结构中dropout层使用的drop_rate,
  5. dropout_rate是最后一个全连接层前的dropout层(在stage9的Pooling与FC之间)的dropout_rate。

强化学习

相关推荐
张较瘦_1 天前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
CV-杨帆2 天前
论文阅读:arxiv 2025 OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
论文阅读
七元权2 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_112 天前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
噜~噜~噜~3 天前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_3 天前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_3 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola4 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_5 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙5 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程