EfficientNet论文笔记

EfficientNet论文笔记

通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。

数据集效果小于resolution怎么办?

EfficientNet---b0框架

表格中每个MBConv后会跟一个数字1或6,这里的1或6就是倍率因子n,即MBConv中第一个 1x1的卷积层会将输入特征矩阵的channels扩充为n倍 ,其中k3x3或k5x5表示MBConv中Depthwise Conv所采用的卷积核大小。Channels表示通过该Stage后输出特征矩阵的Channels。

MBConv结构

Swish激活函数+SE模块

  1. 第一个升维的1x1卷积层,它的卷积核个数是输入特征矩阵channel的n倍,当n等于1不需要该层。
  2. 仅当输入MBConv结构的特征矩阵与输出的特征矩阵shape相同时才使用。在源码实现中只有使用shortcut的时候才有Dropout层。

SE模块:

第一个激活函数替换成Swish激活函数

其他版本的详细参数:

  1. input_size代表训练网络时输入网络的图像大小
  2. width_coefficient代表channel维度上的倍率因子,比如在 EfficientNetB0中Stage1的3x3卷积层所使用的卷积核个数是32,那么在B6中就是 32 × 1.8 = 57.6接着取整到离它最近的8的整数倍即56,其它Stage同理(加速运算)。
  3. depth_coefficient代表depth维度上的倍率因子(仅针对Stage2到Stage8),比如在EfficientNetB0中Stage7的 Li=4,那么在B6中就是 4(block) × 2.6 = 10.4 接着向上取整即11
  4. drop_connect_rate是在MBConv结构中dropout层使用的drop_rate,
  5. dropout_rate是最后一个全连接层前的dropout层(在stage9的Pooling与FC之间)的dropout_rate。

强化学习

相关推荐
张较瘦_2 小时前
[论文阅读] AI + 软件工程 | LLM救场Serverless开发!SlsReuse框架让函数复用率飙升至91%,还快了44%
论文阅读·人工智能·软件工程
m0_650108248 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
做cv的小昊15 小时前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
m0_650108241 天前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
m0_650108242 天前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践
论文阅读·人工智能·palm·谷歌大模型·大规模语言模型·全面评估与行为分析·scaling效应
小殊小殊2 天前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习
有点不太正常2 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读
论文阅读·大模型·agent安全
小殊小殊2 天前
【论文笔记】大型语言模型的知识蒸馏与数据集蒸馏
论文阅读·人工智能·深度学习
SatoshiGogo3 天前
AIGC 论文笔记
论文阅读·aigc
walnut_oyb4 天前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理