EfficientNet论文笔记

EfficientNet论文笔记

通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。

数据集效果小于resolution怎么办?

EfficientNet---b0框架

表格中每个MBConv后会跟一个数字1或6,这里的1或6就是倍率因子n,即MBConv中第一个 1x1的卷积层会将输入特征矩阵的channels扩充为n倍 ,其中k3x3或k5x5表示MBConv中Depthwise Conv所采用的卷积核大小。Channels表示通过该Stage后输出特征矩阵的Channels。

MBConv结构

Swish激活函数+SE模块

  1. 第一个升维的1x1卷积层,它的卷积核个数是输入特征矩阵channel的n倍,当n等于1不需要该层。
  2. 仅当输入MBConv结构的特征矩阵与输出的特征矩阵shape相同时才使用。在源码实现中只有使用shortcut的时候才有Dropout层。

SE模块:

第一个激活函数替换成Swish激活函数

其他版本的详细参数:

  1. input_size代表训练网络时输入网络的图像大小
  2. width_coefficient代表channel维度上的倍率因子,比如在 EfficientNetB0中Stage1的3x3卷积层所使用的卷积核个数是32,那么在B6中就是 32 × 1.8 = 57.6接着取整到离它最近的8的整数倍即56,其它Stage同理(加速运算)。
  3. depth_coefficient代表depth维度上的倍率因子(仅针对Stage2到Stage8),比如在EfficientNetB0中Stage7的 Li=4,那么在B6中就是 4(block) × 2.6 = 10.4 接着向上取整即11
  4. drop_connect_rate是在MBConv结构中dropout层使用的drop_rate,
  5. dropout_rate是最后一个全连接层前的dropout层(在stage9的Pooling与FC之间)的dropout_rate。

强化学习

相关推荐
热情的Dongming14 小时前
【课程总结】day34:多模态大模型之ViT模型、CLIP模型论文阅读理解
论文阅读
chencjiajy16 小时前
向量模型Jina Embedding: 从v1到v3论文笔记
论文阅读·embedding·向量模型
HollowKnightZ20 小时前
论文阅读笔记:DRCT: Saving Image Super-Resolution away from Information Bottleneck
论文阅读·笔记
苦瓜汤补钙20 小时前
论文阅读:DynamicDet: A Unified Dynamic Architecture for Object Detection
论文阅读·人工智能·目标检测
Maker~1 天前
18、论文阅读:AOD-Net:一体化除雾网络
网络·论文阅读·计算机视觉
新手小白勇闯新世界2 天前
论文阅读-用于图像识别的深度残差学习
论文阅读·人工智能·深度学习·学习·计算机视觉
大拨鼠2 天前
【多模态读论文系列】LLaMA-Adapter V2论文笔记
论文阅读·人工智能·llama
小嗷犬2 天前
【论文笔记】Dense Connector for MLLMs
论文阅读·人工智能·语言模型·大模型·多模态
新手小白勇闯新世界2 天前
论文阅读- --DeepI2P:通过深度分类进行图像到点云配准
论文阅读·深度学习·算法·计算机视觉
0x2112 天前
[论文阅读]BERT-based Lexical Substitution
论文阅读·人工智能·bert