【大数据之Hive】二十五、HQL语法优化之小文件合并

1 优化说明

小文件优化可以从两个方面解决,在Map端输入的小文件合并,在Reduce端输出的小文件合并。

1.1 Map端输入文件合并

合并Map端输入的小文件是指将多个小文件分到同一个切片中,由一个Map Task处理,防止单个小文件启动一个Map Task,造成资源浪费。

相关参数:

sql 复制代码
--将多个小文件切片合成一个切片,由一个map task处理
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

1.2 Reduce输出文件合并

合并Reduce端输出的小文件是指将多个小文件合并成大文件,减少HDFS小文件数量。

原理:

根据计算任务输出文件的平均大小判断,若符合条件则单独启动一个额外的任务进行合并。

相关参数:

sql 复制代码
--开启合并map only任务输出的小文件,针对只有map的计算任务
set hive.merge.mapfiles=true;

--开启合并map reduce任务输出的小文件
set hive.merge.mapredfiles=true;

--合并后的文件大小
set hive.merge.size.per.task=256000000;

--触发小文件合并任务的阈值,若某计算任务输出的文件平均大小低于该值,则触发合并
set hive.merge.smallfiles.avgsize=16000000;

2 案例

1、示例SQL语句

sql 复制代码
--计算各省份订单金额总和,下表为结果表
drop table if exists order_amount_by_province;
create table order_amount_by_province(
    provonce_id string comment '省份id',
    order_amount decimal(16,2) comment '订单金额'
)
location '/order_amount_by_province';

insert overwrite table order_amount_by_province
select
    province_id,
    sum(total_amount)
from order_detail
group by province_id;

2、优化前

根据任务并行度,在默认情况下,该sql语句的Reduce端并行度为5,所以最终输出的文件个数也为5,且均为小文件。

3、优化思路
方案一、合理设置任务的Reduce端并行度

将任务并行度设置为1,保证输出结果为1个文件。

sql 复制代码
set mapreduce.job.reduces=1;

方案二、启用HIve合并小文件进行优化

设置参数:

sql 复制代码
--开启合并map reduce任务输出的小文件
set hive.merge.mapredfiles=true;

--合并后的文件大小
set hive.merge.size.per.task=256000000;

--触发小文件合并任务的阈值,若某计算任务输出的文件平均大小低于该值,则触发合并
set hive.merge.smallfiles.avgsize=16000000;
相关推荐
测试界的酸菜鱼3 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
时差9535 分钟前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java7 分钟前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
苍老流年7 分钟前
Hive中各种Join的实现
数据仓库·hive·hadoop
Mephisto.java13 分钟前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database
道可云14 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
成都古河云26 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
软工菜鸡33 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
静听山水35 分钟前
Hive:UDTF 函数
hive
EDG Zmjjkk2 小时前
Hive 查询(详细实操版)
数据仓库·hive·hadoop