使用OpenCV DNN推理YOLOv5-CLS转换后的ONNX分类模型

YOLOv5是一种先进的目标检测算法,而YOLOv5-CLS则是YOLOv5的一个变种,专门用于图像分类任务。为了在实际应用中使用YOLOv5-CLS模型,我们需要将其转换为Open Neural Network Exchange (ONNX) 格式,并使用OpenCV DNN库来进行推理。

步骤1: 安装OpenCV和ONNX 首先,你需要确保已经安装了OpenCV和ONNX。可以通过以下命令来安装:

复制代码
pip install opencv-python
pip install onnx

步骤2: 转换YOLOv5-CLS为ONNX格式 在这一步,我们将使用YOLOv5的官方代码库将YOLOv5-CLS模型转换为ONNX格式。请按照以下步骤进行操作:

  1. 克隆YOLOv5的官方代码库:

    复制代码
    git clone https://github.com/ultralytics/yolov5.git
  2. 进入yolov5目录,并下载预训练的YOLOv5-CLS模型权重:

    复制代码
    cd yolov5
    wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s6.pt
  3. 运行export.py脚本来将模型转换为ONNX格式:

    复制代码
    python export.py --weights yolov5s6.pt --include onnx --img 640

    此步骤将生成一个名为'yolov5s6.onnx'的文件,这就是我们要使用的YOLOv5-CLS模型的ONNX版本。

    步骤3: 使用OpenCV DNN进行推理 现在,我们已经准备好进行推理了。下面是一个简单的示例代码,展示了如何使用OpenCV DNN库加载和运行YOLOv5-CLS模型:

    复制代码
    import cv2
    
    # 加载YOLOv5-CLS模型
    net = cv2.dnn.readNetFromONNX("yolov5s6.onnx")
    
    # 加载图像
    image = cv2.imread("test.jpg")
    
    # 创建blob并设置输入
    blob = cv2.dnn.blobFromImage(image, 1/255., (640, 640), swapRB=True)
    net.setInput(blob)
    
    # 进行推理
    output = net.forward()
    
    # 解析推理结果
    classes = open("coco.names").read().strip().split("\n")
    for detection in output[0, 0]:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            label = f"{classes[class_id]}: {confidence:.2f}"
            print(label)
    
    # 显示图像
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    请注意,上述代码中我们假设已经有一个名为'test.jpg'的测试图像和一个包含类别名称的 'coco.names' 文件。

    结论: 本文介绍了如何使用OpenCV DNN库来进行YOLOv5-CLS模型的推理。我们首先将YOLOv5-CLS模型转换为ONNX格式,然后使用OpenCV DNN库加载和运行该模型进行图像分类。通过按照本文提供的步骤和示例代码,你可以轻松地在实际应用中使用YOLOv5-CLS模型进行图像分类任务。

相关推荐
一只小灿灿4 小时前
前端计算机视觉:使用 OpenCV.js 在浏览器中实现图像处理
前端·opencv·计算机视觉
198913 小时前
【零基础学AI】第31讲:目标检测 - YOLO算法
人工智能·rnn·yolo·目标检测·tensorflow·lstm
cver12314 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
Natsuagin18 小时前
【保姆级目标检测教程】Ubuntu 20.04 部署 YOLOv13 全流程(附训练/推理代码)
yolo·目标检测·ubuntu·计算机视觉
看到我,请让我去学习19 小时前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
蹦蹦跳跳真可爱5891 天前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
彭祥.2 天前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类
要努力啊啊啊2 天前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
Tony沈哲2 天前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
加油吧zkf2 天前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo