接口自动化测试框架开发 (pytest+allure+aiohttp+ 用例自动生成)

目录

前言:

第一部分(整个过程都要求是异步非阻塞的)

[读取 yaml 测试用例](#读取 yaml 测试用例)

[http 请求测试接口](#http 请求测试接口)

收集测试数据

第二部分

[动态生成 pytest 认可的测试用例](#动态生成 pytest 认可的测试用例)

[后续(yml 测试文件自动生成)](#后续(yml 测试文件自动生成))


前言:

开发一个接口自动化测试框架是一个很好的方式,可以提高测试效率和准确性。在这个框架中,你可以使用pytest作为测试框架,allure作为测试报告生成工具,aiohttp作为异步HTTP客户端,以及用例自动生成功能来简化测试用例的编写。

近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

  • 接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
  • 接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
  • 接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做
  • pytest 和 allure 太好用了,新框架要集成它们
  • 接口测试的用例应该尽量简洁,最好用 yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广 加上我对 Python 的协程很感兴趣,也学了一段时间,一直希望学以致用,所以 http 请求我决定用 aiohttp 来实现。 但是 pytest 是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取 yaml 测试用例,http 请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成 pytest 认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

第一部分(整个过程都要求是异步非阻塞的)

读取 yaml 测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和 aiohttp.ClientSession().request(method,url,**kwargs) 是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。

args:
  - post
  - /xxx/add
kwargs:
  -
    caseName: 新增xxx
    data:
      name: ${gen_uid(10)}
validator:
  -
    json:
      successed: True

异步读取文件可以使用 aiofiles 这个第三方库,yaml_load 是一个协程,可以保证主进程读取 yaml 测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据

async def yaml_load(dir='', file=''):
    """
    异步读取yaml文件,并转义其中的特殊值
    :param file:
    :return:
    """
    if dir:
        file = os.path.join(dir, file)
    async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:
        data = await f.read()

    data = yaml.load(data)

    # 匹配函数调用形式的语法
    pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')
    pattern_function2 = re.compile(r'^\${(.*)}$')
    # 匹配取默认值的语法
    pattern_function3 = re.compile(r'^\$\((.*)\)$')

    def my_iter(data):
        """
        递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值
        :param data:
        :return:
        """
        if isinstance(data, (list, tuple)):
            for index, _data in enumerate(data):
                data[index] = my_iter(_data) or _data
        elif isinstance(data, dict):
            for k, v in data.items():
                data[k] = my_iter(v) or v
        elif isinstance(data, (str, bytes)):
            m = pattern_function.match(data)
            if not m:
                m = pattern_function2.match(data)
            if m:
                return eval(m.group(1))
            if not m:
                m = pattern_function3.match(data)
            if m:
                K, k = m.group(1).split(':')
                return bxmat.default_values.get(K).get(k)

            return data

    my_iter(data)

    return BXMDict(data)

可以看到,测试用例还支持一定的模板语法,如${function}$(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http 请求测试接口

http 请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http 也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据

async def http(domain, *args, **kwargs):
    """
    http请求处理器
    :param domain: 服务地址
    :param args:
    :param kwargs:
    :return:
    """
    method, api = args
    arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}

    # kwargs中加入token
    kwargs.setdefault('headers', {}).update({'token': bxmat.token})
    # 拼接服务地址和api
    url = ''.join([domain, api])

    async with ClientSession() as session:
        async with session.request(method, url, **kwargs) as response:
            res = await response_handler(response)
            return {
                'response': res,
                'url': url,
                'arguments': arguments
            }
收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入asyncio.Semaphore(num)来控制并发

async def entrace(test_cases, loop, semaphore=None):
    """
    http执行入口
    :param test_cases:
    :param semaphore:
    :return:
    """
    res = BXMDict()
    # 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息
    # 这就导致session不能正确处理登录态的问题
    # 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True
    async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:
        await advertise_cms_login(session)
        if semaphore:
            async with semaphore:
                for test_case in test_cases:
                    data = await one(session, case_name=test_case)
                    res.setdefault(data.pop('case_dir'), BXMList()).append(data)
        else:
            for test_case in test_cases:
                data = await one(session, case_name=test_case)
                res.setdefault(data.pop('case_dir'), BXMList()).append(data)

        return res


async def one(session, case_dir='', case_name=''):
    """
    一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果
    所有操作都是异步非阻塞的
    :param session: session会话
    :param case_dir: 用例目录
    :param case_name: 用例名称
    :return:
    """
    project_name = case_name.split(os.sep)[1]
    domain = bxmat.url.get(project_name)
    test_data = await yaml_load(dir=case_dir, file=case_name)
    result = BXMDict({
        'case_dir': os.path.dirname(case_name),
        'api': test_data.args[1].replace('/', '_'),
    })
    if isinstance(test_data.kwargs, list):
        for index, each_data in enumerate(test_data.kwargs):
            step_name = each_data.pop('caseName')
            r = await http(session, domain, *test_data.args, **each_data)
            r.update({'case_name': step_name})
            result.setdefault('responses', BXMList()).append({
                'response': r,
                'validator': test_data.validator[index]
            })
    else:
        step_name = test_data.kwargs.pop('caseName')
        r = await http(session, domain, *test_data.args, **test_data.kwargs)
        r.update({'case_name': step_name})
        result.setdefault('responses', BXMList()).append({
            'response': r,
            'validator': test_data.validator
        })

    return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成 pytest 认可的测试用例打下了良好的基础

def main(test_cases):
    """
    事件循环主函数,负责所有接口请求的执行
    :param test_cases:
    :return:
    """
    loop = asyncio.get_event_loop()
    semaphore = asyncio.Semaphore(bxmat.semaphore)
    # 需要处理的任务
    # tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]
    task = loop.create_task(entrace(test_cases, loop, semaphore))
    # 将协程注册到事件循环,并启动事件循环
    try:
        # loop.run_until_complete(asyncio.gather(*tasks))
        loop.run_until_complete(task)
    finally:
        loop.close()

    return task.result()

第二部分

动态生成 pytest 认可的测试用例

首先说明下 pytest 的运行机制,pytest 首先会在当前目录下找 conftest.py 文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找 test 开头或结尾的.py 文件,如果找到了,如果找到了,再分析 fixture,如果有 session 或 module 类型的,并且参数 autotest=True 或标记了 pytest.mark.usefixtures(a...),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。

可以看出,pytest 测试运行起来的关键是,必须有至少一个被 pytest 发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。

现在并没有任何 pytest 认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让 pytest 动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在 pytest 动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。

# test_bootstrap.py
import pytest

class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

我想到的是通过 fixture,因为 fixture 有 setup 的能力,这样我通过定义一个 scope 为 session 的 fixture,然后在 TestStarter 上面标记 use,就可以在导入 TestStarter 之前预先处理一些事情,那么我把生成用例的操作放在这个 fixture 里就能完成目标了。

# test_bootstrap.py
import pytest

@pytest.mark.usefixtures('te', 'test_cases')
class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

pytest 有个--rootdir参数,该 fixture 的核心目的就是,通过--rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在 pytest 内部再运行了一个 pytest!最后把生成的测试文件删除。注意该 fixture 要定义在conftest.py里面,因为 pytest 对于conftest中定义的内容有自发现能力,不需要额外导入。

# conftest.py
@pytest.fixture(scope='session')
def test_cases(request):
    """
    测试用例生成处理
    :param request:
    :return:
    """
    var = request.config.getoption("--rootdir")
    test_file = request.config.getoption("--tf")
    env = request.config.getoption("--te")
    cases = []
    if test_file:
        cases = [test_file]
    else:
        if os.path.isdir(var):
            for root, dirs, files in os.walk(var):
                if re.match(r'\w+', root):
                    if files:
                        cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])

    data = main(cases)

    content = """
import allure

from conftest import CaseMetaClass


@allure.feature('{}接口测试({}项目)')
class Test{}API(object, metaclass=CaseMetaClass):

    test_cases_data = {}
"""
    test_cases_files = []
    if os.path.isdir(var):
        for root, dirs, files in os.walk(var):
            if not ('.' in root or '__' in root):
                if files:
                    case_name = os.path.basename(root)
                    project_name = os.path.basename(os.path.dirname(root))
                    test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))
                    with open(test_case_file, 'w', encoding='utf-8') as fw:
                        fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))
                    test_cases_files.append(test_case_file)

    if test_file:
        temp = os.path.dirname(test_file)
        py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))
    else:
        py_file = var

    pytest.main([
        '-v',
        py_file,
        '--alluredir',
        'report',
        '--te',
        env,
        '--capture',
        'no',
        '--disable-warnings',
    ])

    for file in test_cases_files:
        os.remove(file)

    return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被 pytest 认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass

function_express = """
def {}(self, response, validata):
    with allure.step(response.pop('case_name')):
        validator(response,validata)"""


class CaseMetaClass(type):
    """
    根据接口调用的结果自动生成测试用例
    """

    def __new__(cls, name, bases, attrs):
        test_cases_data = attrs.pop('test_cases_data')
        for each in test_cases_data:
            api = each.pop('api')
            function_name = 'test' + api
            test_data = [tuple(x.values()) for x in each.get('responses')]
            function = gen_function(function_express.format(function_name),
                                    namespace={'validator': validator, 'allure': allure})
            # 集成allure
            story_function = allure.story('{}'.format(api.replace('_', '/')))(function)
            attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)

        return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取 test_cases_data 属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被 allure 的细粒度测试报告功能和 pytest 提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起 pytest,pytest 也就能发现这些用例并执行了。

def gen_function(function_express, namespace={}):
    """
    动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量
    :param function_express: 函数表达式,示例 'def foobar(): return "foobar"'
    :return:
    """
    builtins.__dict__.update(namespace)
    module_code = compile(function_express, '', 'exec')
    function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]
    return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意 namespace 的问题,最好默认传builtins.__dict__,然后自定义的方法通过 namespace 参数传进去。

后续(yml 测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?

我目前做接口测试的流程是,如果项目集成了 swagger,通过 swagger 去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method 等等的区别,那么这个过程我觉得完全可以自动化。

因为 swagger 有个网页啊,我可以去提取关键信息来自动创建.yml 测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。

于是我试着去解析请求 swagger 首页得到的 HTML,然后失望的是并没有实际数据,后来猜想应该是用了 ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是 json 数据,那么问题就简单了,网页分析都不用了。

import re
import os
import sys

from requests import Session

template ="""
args:
  - {method}
  - {api}
kwargs:
  -
    caseName: {caseName}
    {data_or_params}:
        {data}
validator:
  -
    json:
      successed: True
"""


def auto_gen_cases(swagger_url, project_name):
    """
    根据swagger返回的json数据自动生成yml测试用例模板
    :param swagger_url:
    :param project_name:
    :return:
    """
    res = Session().request('get', swagger_url).json()
    data = res.get('paths')

    workspace = os.getcwd()

    project_ = os.path.join(workspace, project_name)

    if not os.path.exists(project_):
        os.mkdir(project_)

    for k, v in data.items():
        pa_res = re.split(r'[/]+', k)
        dir, *file = pa_res[1:]

        if file:
            file = ''.join([x.title() for x in file])
        else:
            file = dir

        file += '.yml'

        dirs = os.path.join(project_, dir)

        if not os.path.exists(dirs):
            os.mkdir(dirs)

        os.chdir(dirs)

        if len(v) > 1:
            v = {'post': v.get('post')}
        for _k, _v in v.items():
            method = _k
            api = k
            caseName = _v.get('description')
            data_or_params = 'params' if method == 'get' else 'data'
            parameters = _v.get('parameters')

            data_s = ''
            try:
                for each in parameters:
                    data_s += each.get('name')
                    data_s += ': \n'
                    data_s += ' ' * 8
            except TypeError:
                data_s += '{}'

        file_ = os.path.join(dirs, file)

        with open(file_, 'w', encoding='utf-8') as fw:
            fw.write(template.format(
                method=method,
                api=api,
                caseName=caseName,
                data_or_params=data_or_params,
                data=data_s
            ))

        os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了 swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

作为一位过来人也是希望大家少走一些弯路

在这里我给大家分享一些自动化测试前进之路的必须品,希望能对你带来帮助。

(WEB自动化测试、app自动化测试、接口自动化测试、持续集成、自动化测试开发、大厂面试真题、简历模板等等)

相信能使你更好的进步!

点击下方小卡片

相关推荐
CT随几秒前
Redis内存碎片详解
java·开发语言
滚雪球~4 分钟前
如何使用Windows快捷键在多显示器间移动窗口
windows·计算机外设
brrdg_sefg9 分钟前
gitlab代码推送
java
做梦敲代码13 分钟前
达梦数据库-读写分离集群部署
数据库·达梦数据库
m0_7482309419 分钟前
Rust赋能前端: 纯血前端将 Table 导出 Excel
前端·rust·excel
qq_5895681026 分钟前
Echarts的高级使用,动画,交互api
前端·javascript·echarts
hanbarger32 分钟前
mybatis框架——缓存,分页
java·spring·mybatis
cdut_suye40 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
鸭梨山大。1 小时前
Jenkins 任意文件读取(CVE-2024-23897)修复及复现
安全·中间件·jenkins
苹果醋31 小时前
2020重新出发,MySql基础,MySql表数据操作
java·运维·spring boot·mysql·nginx