【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
草莓熊Lotso1 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
youngfengying1 小时前
Swin Transformer
人工智能·深度学习·transformer
User_芊芊君子1 小时前
光影协同:基于Rokid CXR-M SDK构建工业级远程专家协作维修系统
人工智能
摘星编程1 小时前
AI文物复活馆:基于 AiOnly 一键调用 Claude 4.5 + Gemini 3 Pro 的多模态复原神器
人工智能·aionly
AI绘画哇哒哒2 小时前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio3 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll3 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计6 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z7 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方8 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务