【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
userkang11 分钟前
消失的前后端,崛起的智能体
前端·人工智能·后端·ai·硬件工程
契合qht53_shine11 分钟前
深度学习 视觉处理(CNN) day_01
人工智能·深度学习·cnn
新智元15 分钟前
100 年企业知识超 10 万文件,「内网版 ChatGPT」血洗最卷行业!全员 70% 和 AI 共事
人工智能·openai
新智元17 分钟前
AGI 幻灭,LeCun 观点得证?哈佛研究实锤 AI 不懂因果,世界模型神话破灭
人工智能·openai
量子位30 分钟前
图像编辑开源新 SOTA,来自多模态卷王阶跃!大模型行业正步入「多模态时间」
人工智能·llm
量子位32 分钟前
数学家们仍在追赶天才拉马努金
人工智能·数学
是瑶瑶子啦36 分钟前
【深度学习】多头注意力机制的实现|pytorch
人工智能·pytorch·深度学习
小和尚同志40 分钟前
热门 AI 编辑器(Cursor、v0、Manus、Windsurf 等)及工具的系统提示词
人工智能·aigc
量子位1 小时前
不用等R2了!第三方给新版DeepSeek V3添加深度思考,推理101秒破解7米甘蔗过2米门
人工智能·deepseek
用户274533910681 小时前
MCP 生命周期
人工智能