【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
无心水9 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小鸡吃米…15 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫16 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)16 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan16 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维16 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS16 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd17 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟17 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然17 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析