【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
whaosoft-14330 分钟前
51c自动驾驶~合集7
人工智能
刘晓倩4 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋4 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
绝顶大聪明8 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
加百力8 小时前
AI助手竞争白热化,微软Copilot面临ChatGPT的9亿下载挑战
人工智能·microsoft·copilot
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
香蕉可乐荷包蛋9 小时前
AI算法之图像识别与分类
人工智能·学习·算法
张较瘦_10 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能