【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
song150265372983 分钟前
如何选择适合的AI视觉检测设备?
人工智能
FE_C_P小麦3 分钟前
AI Prompt 提示词模板【转载】
人工智能
桂花饼9 分钟前
量化双雄争霸:九坤 IQuest-Coder-V1 的技术突破
人工智能·aigc·nano banana 2·openai兼容接口·claude opus 4.5·sora2 pro
undsky_15 分钟前
【n8n教程】:RSS Feed Trigger节点,玩转RSS订阅自动化
人工智能·ai·aigc·ai编程
摘星编程19 分钟前
【RAG+LLM实战指南】如何用检索增强生成破解AI幻觉难题?
android·人工智能
人工智能培训20 分钟前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策
数据饕餮22 分钟前
提示词工程实训营08- 写作助手:文章、报告、创意文案——从“写作困难户“到“高产作家的蜕变秘籍
人工智能·大模型·提示词工程
wenzhangli723 分钟前
告别手撸架构图!AI+Ooder实现漂亮架构+动态交互+全栈可视化实战指南
人工智能·架构·交互
线束线缆组件品替网24 分钟前
Amphenol LTW 防水线缆 IP67/IP68 结构解析
运维·网络·人工智能·汽车·硬件工程·材料工程
码农水水37 分钟前
大疆Java面试被问:TCC事务的悬挂、空回滚问题解决方案
java·开发语言·人工智能·面试·职场和发展·单元测试·php