【动手学深度学习】读写文件

【动手学深度学习】读写文件

加载和保存张量

对于单个张量 我么可以直接调用load和save函数分别读写,这两个函数要求我们提供一个名称,save要求保存的变量作为输入

py 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 创建一个长度为4的张量
x = torch.arange(4)
torch.save(x, 'x-file')


x2 = torch.load('x-file')
print(x2)

存储一个张量列表,然后把他们写入内存

py 复制代码
y = torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2 = torch.load('x-files')
(x2,y2)

我们甚至可以写入或者读取从字符串映射到张量的字典,方面读取权重

py 复制代码
# 创建张量字典  保存张量
mydict = {'x':x,'y':y}
torch.save(mydict,'mydict')

mydict2 = torch.load('mydict')
mydict2

加载和保存模型参数

深度学习框架提供内置函数来保存和加载整个网络,这里是保存模型的参数而不是保存整个模型

py 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20,256)
        self.output = nn.Linear(256,10)

    def forward(self,X):
        return self.output(F.relu(self.hidden(X)))
    
net = MLP()
X = torch.randn(size= (2,20))
Y = net(X)

取出模型的参数保存在一个mlp.params文件中

py 复制代码
# 取出模型的参数保存在一个mlp.params文件中
torch.save(net.state_dict(),'mlp.params')

恢复模型,实例化原始多层感知机模型的一个备份,我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

py 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

比较两个对象的模型参数,那么输入相同的X 计算的输出应该相同

py 复制代码
Y_clone = clone(X)
Y_clone == Y
相关推荐
东胜物联13 分钟前
探寻5G工业网关市场,5G工业网关品牌解析
人工智能·嵌入式硬件·5g
皓74124 分钟前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
wangyue441 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试1 小时前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀1 小时前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan1 小时前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀1 小时前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营3 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习