自动驾驶GOD:3D空间感知革命

在自动驾驶领域,GOD(Generalized Occupancy Detection,广义占用检测) 是一个关键的感知模块,主要用于实时构建车辆周围物理空间的3D占用结构,其核心作用和技术特点如下:


一、GOD模块的核心功能

  1. 空间建模

    通过融合多传感器数据(摄像头、雷达等),将环境划分为微小体素(3D像素),动态标记每个体素是否被物体占据。例如:
    Occupancy(x,y,z,t)={1被占用0空闲 \text{Occupancy}(x,y,z,t) = \begin{cases} 1 & \text{被占用} \\ 0 & \text{空闲} \end{cases} Occupancy(x,y,z,t)={10被占用空闲

    这种方式可精确表达不规则障碍物(如施工围栏、掉落货物)的位置和形状。

  2. 无类别感知

    与传统目标检测(需预定义"车辆""行人"等类别)不同,GOD不依赖语义标签,直接检测物理空间占用状态。这使其能识别训练数据中未出现过的未知障碍物(如动物、翻倒的推车),显著提升长尾场景安全性。

  3. 运动预测

    结合时序数据,GOD可预测占用体素的运动轨迹(如移动的行人、变道车辆),为规划模块提供动态环境信息。


二、技术实现原理

  1. 多视角融合

    将车身环视摄像头的2D图像,通过BEV(鸟瞰图)转换+3D体素编码技术,重建为统一坐标系下的3D空间表示。主流方案包括:

    • LSS(Lift-Splat-Shoot):基于深度估计的视角转换
    • BEVFormer:利用Transformer融合时序特征
  2. 神经网络架构

    采用3D卷积神经网络稀疏体素网络(如Occupancy Networks),高效处理体素数据并输出占用概率和运动向量。


三、为什么GOD至关重要?

传统感知瓶颈 GOD的解决方案
依赖预定义物体类别 检测所有物理占用,无类别限制
难以处理未知障碍物 泛化能力强,应对corner case
3D信息不连续(如点云稀疏) 输出稠密且连续的3D占用网格

典型案例:特斯拉FSD v12的端到端系统中,GOD模块直接输出体素级环境结构,替代了传统规则驱动的障碍物处理流程,使车辆能安全绕过非常规障碍物(如倒下的树干)。


四、与自动驾驶架构的整合

在端到端系统中,GOD作为感知层核心输出,其3D占用信息可直接输入规划与控制模块:

复制代码
传感器数据 → GOD(生成3D占用+运动场) → 神经网络决策 → 控制信号

这种设计避免了传统模块化架构中手工定义接口的信息损失,提升系统决策上限。

相关推荐
机器之心19 小时前
打造图像编辑领域的ImageNet?苹果用Nano Banana开源了一个超大数据集
人工智能·openai
渡我白衣19 小时前
AI 应用层革命(一)——软件的终结与智能体的崛起
人工智能·opencv·机器学习·语言模型·数据挖掘·人机交互·集成学习
weixin_4296302619 小时前
文献10.3 多视图变分深度学习及其在实际室内定位中的应用
人工智能·深度学习
墨利昂19 小时前
Pytorch常用API(ML和DL)
人工智能·pytorch·python
刘孬孬沉迷学习19 小时前
AI+通信+多模态应用分类与核心内容总结
人工智能·机器学习·分类·数据挖掘·信息与通信
Allenlzcoder19 小时前
掌握机器学习算法及其关键超参数
人工智能·机器学习·超参数
LaughingZhu19 小时前
Product Hunt 每日热榜 | 2025-10-26
人工智能·经验分享·搜索引擎·产品运营
2401_8414956419 小时前
【自然语言处理】Transformer模型
人工智能·python·深度学习·算法·语言模型·自然语言处理·transformer
KG_LLM图谱增强大模型19 小时前
[ICAIS2025]探索LLM驱动的知识图谱构建:技术机制、方法对比与未来方向
人工智能·知识图谱·graphrag·知识图谱增强大模型
CH_Qing19 小时前
【ROS2】驱动开发-雷达篇
人工智能·ros2·1024程序员节