【机器学习】特征降维 - 主成分分析PCA

「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:零基础快速入门人工智能《机器学习入门到精通》

相关系数

提取的特征当中,有一些相关(相似)的「冗余特征」,这种特征是没有必要统计的,我们需要「减少」相关的特征,留下不相关的特征。也就是「特征降维」。

特征降维的方式有很多,这里使用其中的一种:主成分分析

一、主成分分析

主成分分析(Principal Component Analysis,PCA), 是一种「统计」方法。通过正交变换将一组可能存在「相关性」的变量转换为一组「线性不相关」的变量,转换后的这组变量叫「主成分」。

统计变量时,变量个数太多并且有很强的相关性,也就是有很多「相似」的变量,这些变量会增加分析的工作量和「复杂性」。

而主成分分析可以根据变量之间的相关性,建立新的变量来替代哪些重复且不重要的变量;也就是用较少的变量来代替原来较多的变量,并可以反映原来多个变量的大部分信息,从而提升处理数据的「速度」。

比如评选三好学生,每个学生有身高、体重、家境、成绩等多个特征,但身高、体重这些特征对于评选来说是无用的,那我们就去掉这种无用特征,用成绩来代替他们。

sklearn.decomposition.PCA( n_components=None )

  • PCA.fit_transform( data ) :接收数据并进行降维
  • PCA.inverse_transform( data ):将降维后的数据转回原始数据
  • PCA.get_covariance():获取协方差数据
  • PCA.get_params():获取模型数据
  • n_components:指定维度(小数:最终保留百分之多少的信息,整数:减少到多少特征)

二、指定维度

n_components 参数为「整数」,意思是降低到「指定维度」。

python 复制代码
from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(result)

输出:

bash 复制代码
[[ 1.28620952e-15  3.82970843e+00]
 [ 5.74456265e+00 -1.91485422e+00]
 [-5.74456265e+00 -1.91485422e+00]]

从结果可以看到,特征从原本的3维降低到现在的2维。

PS:本来有3列,称为3维度;降维后变成2列,称为2维。

三、保留比例

n_components参数为「小数」,意思是降维后保留百分之多少的信息。

python 复制代码
from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=0.30)

# 降维
result = pca.fit_transform(data)
print(result)

输出:

bash 复制代码
[[ 1.28620952e-15]
 [ 5.74456265e+00]
 [-5.74456265e+00]]

从结果可以看到,特征有原来的4维降低到1维,只保留了30%的信息。

四、获取协方差

python 复制代码
from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(pca.get_covariance())

输出:

bash 复制代码
[[  4.33333333  -5.5         -1.66666667   1.16666667]
 [ -5.5          7.           1.5         -1.        ]
 [ -1.66666667   1.5         20.33333333 -15.83333333]
 [  1.16666667  -1.         -15.83333333  12.33333333]]

五、返回原始数据

将降维后的数据转换成原始数据

python 复制代码
from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(pca.inverse_transform(result))

输出:

bash 复制代码
[[2. 8. 4. 5.]
 [6. 3. 0. 8.]
 [5. 4. 9. 1.]]
相关推荐
weixin_387545642 分钟前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨23720 分钟前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro39 分钟前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm44 分钟前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl1 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~1 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进2 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木2 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan772 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
AI让世界更懂你2 小时前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理