【LeetCode】300.最长递增子序列

首先分析这个问题,以示例1为例。

已经求得最大递增子序列长度为4,而且该子序列中最后一个数为101,

那么一定存在一个数ai,使得ai以及ai之前的所有数组成的序列中,

最大递增子序列长度为3,而且该子序列中最后一个数为ai。

我们记dp[ i ]为,从第0个数到第 i-1 个数所组成的序列中,最大递增子序列的长度。那么在示例1中,dp[ 0 ]=1;dp[ 1 ]=1;dp[ 2 ]=1;dp[ 3 ]=2;dp[ 4 ]=2;dp[ 5 ]=3;dp[ 6 ]=4;dp[ 7 ]=4.

示例2中,dp[ 0 ]=1;dp[ 1 ]=2;dp[ 2 ]=2;dp[ 3 ]=3;dp[ 4 ]=3;dp[ 5 ]=4.

可以看出dp[ i ]的值是依次以某种规律递增的。

但由于要求是严格递增的子序列,因此ai之前比ai大的数就不再纳入考虑。

综上所述,dp[ i ]的值可以这么确定:找到ai之前比它小的数ak,dp[ i ]=dp[ k ]+1,最后为了使dp[i]最大,就必须使dp[ k ]最大,因此要在ai之前的数里找到最大的dp[ k ],由此就得到了dp[ i ]。

cpp 复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int dp[2510]={0};
        int len=nums.size();
        for(int i=0;i<len;++i)
        {
            dp[i]=1;
//子序列长度最小值是 1
            for(int j=0;j<i;++j)
//第二层循环的目的是找到nums[i]之前比它小的数nums[j],
//找到最大值dp[j]之后,dp[i]=dp[j]+1
//下面这种写法等效于上面的分析,不过省了一点代码
            {
                if(nums[j]<nums[i])
                dp[i]=max(dp[i],dp[j]+1);
            }
        }
        int MAX=0;
        for(int i=0;i<len;++i) MAX=max(MAX,dp[i]);
//这里需要遍历整个dp数组找出最大值,原因在下面
        return MAX;
    }
};

需要注意的是:这种方法最后需要遍历一遍dp数组来找出最大值,因为如果给出的序列如下:

元素:1,3,6,7,9,4,10,5,6

编号:0 1 2 3 4 5 6 7 8

那么dp[ 6 ]=6,但是计算dp[ 5 ]时,由于6、7、9都比4大,因此只考虑了dp[ 5 ]=max(dp[ 5 ],dp[ 1 ]+1),而dp[ 1 ]=2,故dp[ 5 ]=3;这就导致计算dp[ 7 ]=max(dp[ 7 ],dp[ 5 ]+1)=4,同理dp[8]=5,如果直接输出dp[ len ],就错了。

相关推荐
焜昱错眩..21 分钟前
代码随想录算法训练营第三十九天|62.不同路径 63.不同路径ll
算法
焦耳加热4 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
wan5555cn4 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u6064 小时前
常用排序算法核心知识点梳理
算法·排序
蒋星熠7 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油7 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream7 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL7 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
空白到白8 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
索迪迈科技8 小时前
java后端工程师进修ing(研一版 || day40)
java·开发语言·学习·算法