【LeetCode】300.最长递增子序列

首先分析这个问题,以示例1为例。

已经求得最大递增子序列长度为4,而且该子序列中最后一个数为101,

那么一定存在一个数ai,使得ai以及ai之前的所有数组成的序列中,

最大递增子序列长度为3,而且该子序列中最后一个数为ai。

我们记dp[ i ]为,从第0个数到第 i-1 个数所组成的序列中,最大递增子序列的长度。那么在示例1中,dp[ 0 ]=1;dp[ 1 ]=1;dp[ 2 ]=1;dp[ 3 ]=2;dp[ 4 ]=2;dp[ 5 ]=3;dp[ 6 ]=4;dp[ 7 ]=4.

示例2中,dp[ 0 ]=1;dp[ 1 ]=2;dp[ 2 ]=2;dp[ 3 ]=3;dp[ 4 ]=3;dp[ 5 ]=4.

可以看出dp[ i ]的值是依次以某种规律递增的。

但由于要求是严格递增的子序列,因此ai之前比ai大的数就不再纳入考虑。

综上所述,dp[ i ]的值可以这么确定:找到ai之前比它小的数ak,dp[ i ]=dp[ k ]+1,最后为了使dp[i]最大,就必须使dp[ k ]最大,因此要在ai之前的数里找到最大的dp[ k ],由此就得到了dp[ i ]。

cpp 复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int dp[2510]={0};
        int len=nums.size();
        for(int i=0;i<len;++i)
        {
            dp[i]=1;
//子序列长度最小值是 1
            for(int j=0;j<i;++j)
//第二层循环的目的是找到nums[i]之前比它小的数nums[j],
//找到最大值dp[j]之后,dp[i]=dp[j]+1
//下面这种写法等效于上面的分析,不过省了一点代码
            {
                if(nums[j]<nums[i])
                dp[i]=max(dp[i],dp[j]+1);
            }
        }
        int MAX=0;
        for(int i=0;i<len;++i) MAX=max(MAX,dp[i]);
//这里需要遍历整个dp数组找出最大值,原因在下面
        return MAX;
    }
};

需要注意的是:这种方法最后需要遍历一遍dp数组来找出最大值,因为如果给出的序列如下:

元素:1,3,6,7,9,4,10,5,6

编号:0 1 2 3 4 5 6 7 8

那么dp[ 6 ]=6,但是计算dp[ 5 ]时,由于6、7、9都比4大,因此只考虑了dp[ 5 ]=max(dp[ 5 ],dp[ 1 ]+1),而dp[ 1 ]=2,故dp[ 5 ]=3;这就导致计算dp[ 7 ]=max(dp[ 7 ],dp[ 5 ]+1)=4,同理dp[8]=5,如果直接输出dp[ len ],就错了。

相关推荐
来荔枝一大筐20 小时前
力扣 寻找两个正序数组的中位数
算法
算法与编程之美20 小时前
理解Java finalize函数
java·开发语言·jvm·算法
地平线开发者20 小时前
LLM 训练基础概念与流程简介
算法·自动驾驶
点云SLAM21 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
星释21 小时前
Rust 练习册 :Matching Brackets与栈数据结构
数据结构·算法·rust
地平线开发者21 小时前
Camsys 时间戳信息简介
算法·自动驾驶
星释21 小时前
Rust 练习册 :Luhn与校验算法
java·算法·rust
代码雕刻家21 小时前
C语言中关于类型转换不匹配的解决方案
c语言·开发语言·算法
星星的月亮叫太阳1 天前
large-scale-DRL-exploration 代码阅读 总结
python·算法
王哈哈^_^1 天前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测