【LeetCode】300.最长递增子序列

首先分析这个问题,以示例1为例。

已经求得最大递增子序列长度为4,而且该子序列中最后一个数为101,

那么一定存在一个数ai,使得ai以及ai之前的所有数组成的序列中,

最大递增子序列长度为3,而且该子序列中最后一个数为ai。

我们记dp[ i ]为,从第0个数到第 i-1 个数所组成的序列中,最大递增子序列的长度。那么在示例1中,dp[ 0 ]=1;dp[ 1 ]=1;dp[ 2 ]=1;dp[ 3 ]=2;dp[ 4 ]=2;dp[ 5 ]=3;dp[ 6 ]=4;dp[ 7 ]=4.

示例2中,dp[ 0 ]=1;dp[ 1 ]=2;dp[ 2 ]=2;dp[ 3 ]=3;dp[ 4 ]=3;dp[ 5 ]=4.

可以看出dp[ i ]的值是依次以某种规律递增的。

但由于要求是严格递增的子序列,因此ai之前比ai大的数就不再纳入考虑。

综上所述,dp[ i ]的值可以这么确定:找到ai之前比它小的数ak,dp[ i ]=dp[ k ]+1,最后为了使dp[i]最大,就必须使dp[ k ]最大,因此要在ai之前的数里找到最大的dp[ k ],由此就得到了dp[ i ]。

cpp 复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int dp[2510]={0};
        int len=nums.size();
        for(int i=0;i<len;++i)
        {
            dp[i]=1;
//子序列长度最小值是 1
            for(int j=0;j<i;++j)
//第二层循环的目的是找到nums[i]之前比它小的数nums[j],
//找到最大值dp[j]之后,dp[i]=dp[j]+1
//下面这种写法等效于上面的分析,不过省了一点代码
            {
                if(nums[j]<nums[i])
                dp[i]=max(dp[i],dp[j]+1);
            }
        }
        int MAX=0;
        for(int i=0;i<len;++i) MAX=max(MAX,dp[i]);
//这里需要遍历整个dp数组找出最大值,原因在下面
        return MAX;
    }
};

需要注意的是:这种方法最后需要遍历一遍dp数组来找出最大值,因为如果给出的序列如下:

元素:1,3,6,7,9,4,10,5,6

编号:0 1 2 3 4 5 6 7 8

那么dp[ 6 ]=6,但是计算dp[ 5 ]时,由于6、7、9都比4大,因此只考虑了dp[ 5 ]=max(dp[ 5 ],dp[ 1 ]+1),而dp[ 1 ]=2,故dp[ 5 ]=3;这就导致计算dp[ 7 ]=max(dp[ 7 ],dp[ 5 ]+1)=4,同理dp[8]=5,如果直接输出dp[ len ],就错了。

相关推荐
XiaoLeisj7 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Jasmine_llq26 分钟前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹37 分钟前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin1 小时前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿1 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6171 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v1 小时前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组