【LangChain】检索器之MultiQueryRetriever

MultiQueryRetriever

概要

基于距离的向量数据库检索在高维空间中嵌入查询,并根据"距离"查找相似的嵌入文档。

但是,如果查询措辞发生细微变化,或者嵌入不能很好地捕获数据的语义,检索可能会产生不同的结果。有时需要进行及时的工程/调整来手动解决这些问题,但这可能很乏味。

MultiQueryRetriever 通过使用 LLM 从不同角度为给定的用户输入查询生成多个查询 ,从而自动执行提示调整过程。对于每个查询,它都会检索一组相关文档,并采用所有查询之间的唯一并集来获取更大的一组潜在相关文档。通过对同一问题生成多个视角,MultiQueryRetriever 或许能够克服基于距离的检索的一些限制,并获得更丰富的结果集。

小节下:同一个问题,生成多个角度的问题。

内容

python 复制代码
# 构建示例向量数据库
from langchain.vectorstores import Chroma
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter

# 加载博客文章
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

# 拆分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
splits = text_splitter.split_documents(data)

# 向量数据库
embedding = OpenAIEmbeddings()
vectordb = Chroma.from_documents(documents=splits, embedding=embedding)

简单使用:

指定用于查询生成的 LLM,检索器将完成其余的工作。

python 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever
# 问题
question = "What are the approaches to Task Decomposition?"
# 创建大模型:用于生成内容
llm = ChatOpenAI(temperature=0)
retriever_from_llm = MultiQueryRetriever.from_llm(
    retriever=vectordb.as_retriever(), llm=llm
)
# 设置查询的日志记录
import logging

logging.basicConfig()
logging.getLogger("langchain.retrievers.multi_query").setLevel(logging.INFO)
# 开始检索
unique_docs = retriever_from_llm.get_relevant_documents(query=question)
# 获取生成内容的文档长度
len(unique_docs)

结果:

python 复制代码
    INFO:langchain.retrievers.multi_query:Generated queries: ['1. How can Task Decomposition be approached?', '2. What are the different methods for Task Decomposition?', '3. What are the various approaches to decomposing tasks?']

您还可以提供提示和输出解析器,以将结果拆分为查询列表。

python 复制代码
from typing import List
from langchain import LLMChain
from pydantic import BaseModel, Field
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser


# 输出解析器会将 LLM 结果拆分为查询列表
class LineList(BaseModel):
    # "lines"是解析输出的键(属性名称)
    lines: List[str] = Field(description="Lines of text")


class LineListOutputParser(PydanticOutputParser):
    def __init__(self) -> None:
        super().__init__(pydantic_object=LineList)

    def parse(self, text: str) -> LineList:
        lines = text.strip().split("\n")
        return LineList(lines=lines)


output_parser = LineListOutputParser()

QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""你是一名AI语言模型助手。你的任务是生成五个
给定用户问题的不同版本,用于从向量中检索相关文档
数据库。通过对用户问题产生多种观点,您的目标是帮助
用户克服了基于距离的相似性搜索的一些限制。
提供这些替代问题,并用换行符分隔。
    Original question: {question}""",
)
llm = ChatOpenAI(temperature=0)

# Chain
llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT, output_parser=output_parser)

# Other inputs
question = "任务分解的方法有哪些?"
# 执行
retriever = MultiQueryRetriever(
    retriever=vectordb.as_retriever(), llm_chain=llm_chain, parser_key="lines"
)  # "lines"是解析输出的键(属性名称)

# 结果
unique_docs = retriever.get_relevant_documents(
    query="课程中关于回归的内容是怎样的?"
)
# 文档数量
len(unique_docs)

结果:

python 复制代码
    INFO:langchain.retrievers.multi_query:Generated queries: ["1. 该课程对回归的看法是什么?", '2. 您能否提供课程中讨论的有关回归的信息?', '3. 课程如何涵盖回归主题?', "4. 该课程关于回归的教学内容是什么?", '5. 关于课程,提到了回归?']
    11

总结

现在的搜索,其实是基于向量库的检索,本质上是距离的检索。而我们搜索的措辞的微妙变化,会产生不同的结果,这需要我们手动调整,这个工作枯燥乏味。

MultiQueryRetriever,可以基于你给出的问题,生成多个相关问题。通过生成多角度问题,来自动调整这种微妙的措施变化。

MultiQueryRetriever的使用步骤:

  1. 加载文档:loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load()
  2. 初始化拆分器:text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) splits = text_splitter.split_documents(data)
  3. 构建嵌入:embedding = OpenAIEmbeddings()
  4. 构建向量存储库:vectordb = Chroma.from_documents(documents=splits, embedding=embedding)
  5. 指定llmllm = ChatOpenAI(temperature=0)
  6. 得到MultiQueryRetriever:retriever_from_llm = MultiQueryRetriever.from_llm( retriever=vectordb.as_retriever(), llm=llm )
  7. 得到多角度问题:unique_docs = retriever_from_llm.get_relevant_documents(query=question) len(unique_docs)

参考地址:

https://python.langchain.com/docs/modules/data_connection/retrievers/how_to/MultiQueryRetriever

相关推荐
大模型铲屎官1 天前
玩转 LangChain:从文档加载到高效问答系统构建的全程实战
人工智能·python·ai·langchain·nlp·文档加载·问答系统构建
玩电脑的辣条哥3 天前
怎么使用langchain和ollama自己简单开发搭建一个本地有记忆的大模型?
langchain·flask·数字人管家·ai管家·大模型记忆
for627 天前
langchain4j执行源码分析
java·langchain
冻感糕人~11 天前
使用LangChain、CrewAI、AutoGen搭建数据分析Agent
人工智能·windows·ai·数据分析·langchain·大模型·agent
weixin_3077791311 天前
Python的Langchain库的功能及实现代码
人工智能·python·langchain
CJenny13 天前
LangChain 学习笔记
笔记·学习·langchain
背太阳的牧羊人13 天前
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(2) —— 从 PDF 文档生成矢量数据库 (VectorDB),然后存储文本的嵌入向量
数据库·人工智能·sql·langchain·pdf
小码农叔叔13 天前
【大模型】百度千帆大模型对接LangChain使用详解
langchain·langchain使用详解·langchain对接千帆·langchain组件使用详解·langchain使用·langchain组件使用·langchain组件
背太阳的牧羊人14 天前
使用 SQL 和表格数据进行问答和 RAG(7)—将表格数据(CSV 或 Excel 文件)加载到向量数据库(ChromaDB)中
数据库·sql·langchain·excel
背太阳的牧羊人14 天前
使用 SQL 和表格数据进行问答和 RAG(6)—将指定目录下的 CSV 或 Excel 文件导入 SQLite 数据库
数据库·sql·langchain·sqlite·excel