机器学习&&深度学习——图像分类数据集

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er

🌌上期文章:机器学习&&深度学习------softmax回归(下)

📚订阅专栏:机器学习&&深度学习

希望文章对你们有所帮助

我们使用Fashion-MNIST数据集,来作为我们的图像分类数据集。

python 复制代码
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()  # 使用svg来显示图片,清晰度会更高一些

图像分类数据集

读取数据集

可以通过框架内的内置函数将数据集下载并读取到内存中。

python 复制代码
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间(归一化)
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="D:/Python/pytorch/data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="D:/Python/pytorch/data", train=False, transform=trans, download=True)

运行了好一会:

Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集中的6000张图像 和测试数据集中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。

python 复制代码
print(len(mnist_train), len(mnist_test))

输出:

60000 10000

每个输入图像的高度和宽度都为28像素。数据集由灰度图像组成,其通道数为1。

python 复制代码
print(mnist_train[0][0].shape)

输出:

torch.Size([1, 28, 28])

为方便,之后的图像的形状都记为h×w。

Fashion-MNIST中包含的10个类别,包括T恤、裤子、外套等等。下面函数将会用于在数字标签索引及其文本名称之间进行转换。

python 复制代码
def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

现在可以创建一个函数来可视化这些样本:

python 复制代码
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
d2l.plt.show()

读取小批量

为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从0开始创建。在每次迭代时,数据加载起每次都会读取一小批量的数据,大小为batch_size。通过内置数据迭代器,我们可以随机打乱所有样本,从而无偏见地读取小批量。

python 复制代码
batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                                 num_workers=get_dataloader_workers())

整合所有组件

先定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。这个函数返回训练集和验证集的数据迭代器。此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

python 复制代码
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="D:/Python/pytorch/data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="D:/Python/pytorch/data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))
相关推荐
Chef_Chen2 分钟前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
学术头条38 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
孙同学要努力1 小时前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
AI街潜水的八角1 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
Chef_Chen3 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng3 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
-Nemophilist-3 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
艾派森4 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
5 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习