使用TensorFlow训练深度学习模型实战(上)

大家好,尽管大多数关于神经网络的文章都强调数学,而TensorFlow文档则强调使用现成数据集进行快速实现,但将这些资源应用于真实世界数据集是很有挑战性的,很难将数学概念和现成数据集与我的具体用例联系起来。本文旨在提供一个实用的、逐步的教程,介绍如何使用TensorFlow训练深度学习模型,并重点介绍如何将数据集重塑为TensorFlow对象,以便TensorFlow框架能够识别。

本文主要内容包括:

  • 将DataFrame转换为TensorFlow对象

  • 从头开始训练深度学习模型

  • 使用预训练的模型训练深度学习模型

  • 评估、预测和绘制训练后的模型。

安装TensorFlow和其他必需的库

首先,你需要安装TensorFlow。你可以通过在终端或Anaconda中运行以下命令来完成:

python 复制代码
# 安装所需的软件包
!pip install tensorflow
!pip install tensorflow-datasets

安装TensorFlow之后,导入其他必需的库,如Numpy、Matplotlib和Sklearn。

python 复制代码
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout

加载数据集

一旦导入了所有必需的库,下一步是获取数据集来搭建模型。TensorFlow允许使用各种输入格式,包括CSV、TXT和图像文件,有些数据集可以从TensorFlow-dataset中导入,这些数据集已准备好用作深度学习模型的输入。然而在许多情况下,数据集是以DataFrame格式而不是TensorFlow对象格式存在的。本文我们将使用Sklearn中的MNIST数据集,其格式为Pandas DataFrame。MNIST数据集广泛用于图像分类任务,包括70000个手写数字的灰度图像,每个图像大小为28x28像素。该数据集被分为60000个训练图像和10000个测试图像。

python 复制代码
from sklearn.datasets import fetch_openml

# 加载MNIST数据集
# mnist = fetch_openml('mnist_784')

# 输出MNIST数据集
print('Dataset type:', type(mnist.data))

# 浏览一下加载的数据集
mnist.data.head()

通过输出DataFrame的前部,我们可以观察到它包含784列,每列代表一个像素。

将DataFrame转换为TensorFlow数据集对象

加载了Pandas DataFrame,注意到TensorFlow不支持Pandas DataFrame作为模型的输入,因此必须将DataFrame转换为可以用于训练或评估模型的张量。这个转换过程确保数据以与TensorFlow API兼容的格式存在,为了将MNIST数据集从DataFrame转换为tf.data.Dataset对象,可以执行以下步骤:

  1. 将数据和目标转换为NumPy数组并对数据进行归一化处理

  2. 使用scikit-learn中的train_test_split将数据集拆分为训练集和测试集

  3. 将训练和测试数据重塑为28x28x1的图像

  4. 使用from_tensor_slices为训练集和测试集创建tf.data.Dataset对象

python 复制代码
def get_dataset(mnist):
    # 加载MNIST数据集
    # mnist = fetch_openml('mnist_784')

    # 将数据和目标转换成numpy数组
    X = mnist.data.astype('float32')
    y = mnist.target.astype('int32')

    # 将数据归一化,使其数值在0和1之间
    X /= 255.0

    # 将数据集分成训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # 将训练数据重塑为28x28x1的图像
    X_train = X_train.values.reshape((-1, 28, 28, 1))
    X_test = X_test.values.reshape((-1, 28, 28, 1))

    # 为训练和测试集创建TensorFlow数据集对象
    train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    test_dataset = tf.data.Dataset.from_tensor_slices((X_test, y_test))

    # 输出训练和测试集的形状
    print('Training data shape:', X_train.shape)
    print('Training labels shape:', y_train.shape)
    print('Testing data shape:', X_test.shape)
    print('Testing labels shape:', y_test.shape)

    return X_test, y_test, X_train, y_train

再来看一下我们的训练和测试TensorFlow对象:

经过这个过程,原始数据集已经成功转换为形状为(5600,28,28,1)的TensorFlow对象。

经过以上的步骤我们已经完成了实战的前半部分,后文将继续讲解有关定义深度学习模型、训练模型和评估模型的内容。

相关推荐
这个男人是小帅6 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
__基本操作__8 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
Doctor老王13 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒13 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
埃菲尔铁塔_CV算法6 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】7 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_452600697 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工7 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理