pytorch工具——认识pytorch

目录

pytorch的基本元素操作

python 复制代码
from __future__ import print_function
import torch

创建一个没有初始化的矩阵

python 复制代码
x=torch.empty(5,3)
print(x)

创建一个有初始化的矩阵

python 复制代码
x=torch.rand(5,3)
print(x)

创建一个全0矩阵并可指定数据元素类型为long

python 复制代码
x=torch.zeros(5,3,dtype=torch.long)
print(x)

直接通过数据创建张量

python 复制代码
x=torch.tensor([2,5,3,5])
print(x)

通过已有的一个张量创建相同尺寸的新张量

python 复制代码
x=x.new_ones(5,3,dtype=torch.double)
print(x)

利用randn_like方法得到相同尺寸张量,并且采用随机初始化的方法为其赋值

python 复制代码
y=torch.randn_like(x,dtype=torch.float)
print(y)

采用.size()方法来得到张量的形状

python 复制代码
print(x.size())

加法

第一种方法

python 复制代码
x=torch.randn(5,3)
y=torch.randn(5,3)
print(x+y)

第二种方法

python 复制代码
print(torch.add(x,y))

第三种方法

python 复制代码
result=torch.empty(5,3)
torch.add(x,y,out=result)
print(result)

第四种方式:原地置换(执行的是y=y+x)

python 复制代码
y.add_(x)
print(y)


注意

切片操作

python 复制代码
x[:,1]

改变张量的形状

python 复制代码
x=torch.randn(4,4)
y=x.view(16)
z=x.view(-1,8)
x.size(),y.size(),z.size()

如果张量中只有一个元素,可以用item()将值取出,作为一个python number

python 复制代码
x=torch.randn(1)
print(x,x.item())

torch tensor和numpy array之间的互相转换

python 复制代码
a=torch.ones(5)
b=a.numpy()
a.add_(1)
print(a,b)
python 复制代码
import numpy as np
a=np.ones(5)
b=torch.from_numpy(a)
np.add(a,1,out=a)
print(a,b)


注意

关于cuda tensor:tensor可以用.to()方法将其移动到任意设备上

windows

mac

python 复制代码
if torch.backends.mps.is_available():
    device=torch.device('mps')
    #cpu上创建x,gpu上创建y
    x=torch.randn(1)
    y=torch.ones_like(x,device=device)
    x=x.to(device)
    #此时x,y都在gpu上
    z=x+y
    print(z)
    #再将z转移到cpu上
    print(z.to('cpu',torch.float32))
相关推荐
Vizio<16 分钟前
基于CNN的猫狗识别(自定义CNN模型)
人工智能·笔记·深度学习·神经网络·cnn
kovlistudio25 分钟前
机器学习第十三讲:独热编码 → 把“红黄蓝“颜色变成001/010/100的数字格式
人工智能·机器学习
豆豆29 分钟前
机器学习 day03
人工智能·机器学习
qyresearch_39 分钟前
砷化镓太阳能电池:开启多元领域能源新篇
人工智能
山海不说话1 小时前
深度学习(第3章——亚像素卷积和可形变卷积)
图像处理·人工智能·pytorch·深度学习·目标检测·计算机视觉·超分辨率重建
2201_754918411 小时前
深入理解 OpenCV 的 DNN 模块:从基础到实践
人工智能·opencv·dnn
(・Д・)ノ1 小时前
python打卡day29
开发语言·python
有杨既安然1 小时前
Python高级特性深度解析:从熟练到精通的跃迁之路
开发语言·python·数据挖掘·flask
-一杯为品-1 小时前
【深度学习】#12 计算机视觉
人工智能·深度学习·计算机视觉
蹦蹦跳跳真可爱5892 小时前
Python----神经网络(《Searching for MobileNetV3》论文概括和MobileNetV3网络)
人工智能·python·深度学习·神经网络