CVPR2023新作:3D人体姿态估计

  1. Title: 3D Human Pose Estimation via Intuitive Physics

  2. Affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany

  3. Authors: Shashank Tripathi, Lea Müller, Chun-Hao P. Huang, Omid Taheri, Michael J. Black, Dimitrios Tzionas

  4. Keywords: 3D human pose estimation, physics engine, intuitive-physics terms, pressure heatmap, stable configuration.

  5. Summary:

  • (1): 本文的研究背景是3D人体姿态的估计。

  • (2): 过去的方法忽略了人体与场景的交互,导致估计到的结果往往不够精准、不符合物理规律。本文提出了IPMAN,这一方法具有可解释性、易于实现、计算速度快、可由基于优化和回归的现有方法轻松调用等特点。

  • (3): 本文提出了一种直观物理学(IP)的思想,从3D SMPL Body与场景的交互中推断出身体上的压力热图、压力中心和SMPL Body的重心。并且根据这些信息,用IPMAN估计出色彩图像中的3D人体姿态,从而实现姿态在物理上的"稳定"。 本文的方法是通过于SMPL Body的物理学、以及把压力热图、压力中心、SMPL Body的重心考虑进去,这一具有鲜明特色的方法实现的。

  • (4): 本文在多个数据集上验证了IPMAN的性能,结果显示IPMAN的表现优于目前最先进的方法,并且在提高静态姿势准确率的同时也不会损害动态姿势的准确性。文章提供了IPMAN源代码和数据,同时发表在了CVPR会议上。

  1. Methods:
  • (1): 本文提出的方法是利用直观物理学(IP)的思想,从3D SMPL Body与场景的交互中推断出身体上的压力热图、压力中心和SMPL Body的重心。通过与SMPL Body的物理学、以及考虑压力热图、压力中心、SMPL Body的重心,得出一个具有鲜明特色的3D人体姿态估计方法IPMAN。

  • (2): 在IPMAN中,压力热图用于表示3D SMPL Body与场景之间的接触,压力中心表示场景施加的力影响着身体的哪些部位,而SMPL Body的重心(通过计算所有顶点的加权平均)有助于保持姿势的稳定性。

  • (3): IPMAN方法在预测3D人体姿态时,先利用现有的2D关键点检测器检测得到2D关键点,并根据这些关键点构建输入坐标图,这个输入坐标图可以被用于预测3D人体姿态。根据陆续输入的样本,模型可以自适应地学习更好的姿态估计。

  • (4): 为了证明IPMAN的优越性,本文的作者在几个数据集上进行了实验,结果显示IPMAN比现有方法更好地估计了3D人体姿态。注意到我们的方法不仅提高了静态姿势估计的准确性,而且在动态情况下同样有效。

  1. Conclusion:
  • (1): 本文提出了一种利用直观物理学来估计3D人体姿态的方法,能够更好地推断出身体的稳定姿态,提高静态姿态准确率的同时不会影响动态姿态的准确性。这项工作对于人体活动分析、运动医学和虚拟现实等领域具有重要意义。

  • (2): 创新点:本文利用直观物理学的思想,设计了一种新的3D人体姿态估计方法,通过压力热图、压力中心和SMPL Body的重心来推断身体的稳定姿态;

性能:本文的实验结果表明所提出的IPMAN方法在多个数据集上比现有方法表现更优,不仅提高了姿态准确性,还保持了计算速度快的特点;

工作量:文章提供了IPMAN方法的源代码和数据集,可以方便地应用于现有的优化和回归方法,具有易于实现的特点。

相关推荐
程序员学习Chat2 小时前
计算机视觉Transformer-3 自监督模型
人工智能·计算机视觉·transformer·自监督学习
Hcoco_me3 小时前
大模型面试题25:Softmax函数把“得分”变成“概率”的归一化工具
人工智能·rnn·深度学习·lstm·word2vec
纪伊路上盛名在3 小时前
矩阵微积分速通
深度学习·线性代数·机器学习·矩阵·微积分
Sui_Network4 小时前
Walrus 2025 年度回顾
大数据·前端·人工智能·深度学习·区块链
Stardep5 小时前
深度学习进阶:偏差方差分析与正则化策略全解析
人工智能·深度学习·dropout·正则化·过拟合·欠拟合·方差与偏差
计算机毕业设计指导5 小时前
基于深度学习的车牌识别系统
人工智能·深度学习
haiyu_y5 小时前
Day 54 Inception 网络及其思考
人工智能·pytorch·深度学习
deephub5 小时前
从贝叶斯视角解读Transformer的内部几何:mHC的流形约束与大模型训练稳定性
人工智能·深度学习·神经网络·transformer·残差链接
阿正的梦工坊5 小时前
VisualTrap:一种针对 GUI Agent 的隐蔽视觉后门攻击
人工智能·深度学习·机器学习·语言模型·自然语言处理
渡我白衣5 小时前
从直觉到公式——线性模型的原理、实现与解释
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理·caffe