深入浅出Pytorch函数——torch.max

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.max

· 深入浅出Pytorch函数------torch.maximum


torch.max有三种输入形式,根据其输入形式及参数的不同有下列三种返回形式:

  • torch.max(input):返回输入张量所有元素的最大值。
  • torch.max(input, dim, keepdim=False, *, out=None):返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。如果keepdimTrue,则输出张量的大小与输入张量的大小相同,但尺寸为1的维度dim除外。否则,dim会被挤压(请参见torch.squeeze()),即输出张量比输入少1个维度。
  • torch.max(input, other, *, out=None):参考torch.maximum

语法

复制代码
torch.max(input) -> Tensor
torch.max(input, dim, keepdim=False, *, out=None) -> (values, indices) 
torch.max(input, other, *, out=None) -> Tensor

参数

  • input:[Tensor] 输入张量
  • dim:[int] 待求最大值维度的索引,即返回值中被收缩维度的索引
  • keepdim:[bool] 是否保持输出张量与输入张量的形状一致,默认为False

实例

复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763,  0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)

>>> a = torch.randn(4, 5)
>>> a
tensor([[ 1.1299, -1.2838, -1.0533, -1.8278,  0.1653],
        [ 0.6461,  0.4583,  1.5229, -1.0642, -1.8352],
        [-0.9679,  1.1227, -0.2506, -0.4781, -0.2027],
        [ 0.2576,  0.7588, -0.1484, -0.0256,  0.7012]])

>>> torch.max(a, 0)
torch.return_types.max(
values=tensor([ 1.1299,  1.1227,  1.5229, -0.0256,  0.7012]),
indices=tensor([0, 2, 1, 3, 3]))

>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([1.1299, 1.5229, 1.1227, 0.7588]),
indices=tensor([0, 2, 1, 1]))
相关推荐
人工智能AI技术2 分钟前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
hjs_deeplearning4 分钟前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy17 分钟前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
副露のmagic30 分钟前
深度学习基础复健
人工智能·深度学习
番茄大王sc32 分钟前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
代码丰1 小时前
SpringAI+RAG向量库+知识图谱+多模型路由+Docker打造SmartHR智能招聘助手
人工智能·spring·知识图谱
独处东汉2 小时前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
乐迪信息2 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
风栖柳白杨2 小时前
【语音识别】soundfile使用方法
人工智能·语音识别
胡西风_foxww2 小时前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书