深入浅出Pytorch函数——torch.max

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.max

· 深入浅出Pytorch函数------torch.maximum


torch.max有三种输入形式,根据其输入形式及参数的不同有下列三种返回形式:

  • torch.max(input):返回输入张量所有元素的最大值。
  • torch.max(input, dim, keepdim=False, *, out=None):返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。如果keepdimTrue,则输出张量的大小与输入张量的大小相同,但尺寸为1的维度dim除外。否则,dim会被挤压(请参见torch.squeeze()),即输出张量比输入少1个维度。
  • torch.max(input, other, *, out=None):参考torch.maximum

语法

复制代码
torch.max(input) -> Tensor
torch.max(input, dim, keepdim=False, *, out=None) -> (values, indices) 
torch.max(input, other, *, out=None) -> Tensor

参数

  • input:[Tensor] 输入张量
  • dim:[int] 待求最大值维度的索引,即返回值中被收缩维度的索引
  • keepdim:[bool] 是否保持输出张量与输入张量的形状一致,默认为False

实例

复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763,  0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)

>>> a = torch.randn(4, 5)
>>> a
tensor([[ 1.1299, -1.2838, -1.0533, -1.8278,  0.1653],
        [ 0.6461,  0.4583,  1.5229, -1.0642, -1.8352],
        [-0.9679,  1.1227, -0.2506, -0.4781, -0.2027],
        [ 0.2576,  0.7588, -0.1484, -0.0256,  0.7012]])

>>> torch.max(a, 0)
torch.return_types.max(
values=tensor([ 1.1299,  1.1227,  1.5229, -0.0256,  0.7012]),
indices=tensor([0, 2, 1, 3, 3]))

>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([1.1299, 1.5229, 1.1227, 0.7588]),
indices=tensor([0, 2, 1, 1]))
相关推荐
min1811234567 小时前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
2013092416277 小时前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664557 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王7 小时前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络
梁辰兴7 小时前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
AI营销实验室8 小时前
AI营销破解券商获客难引领2026增长新范式
人工智能·microsoft
njsgcs8 小时前
ppo可以不需要提取特征,直接训练ac吗。ppo不知道自己现在在第几步吗
人工智能·ppo
lixin5565568 小时前
基于深度生成对抗网络的高质量图像生成模型研究与实现
java·人工智能·pytorch·python·深度学习·语言模型
泰迪智能科技018 小时前
泰迪智能科技人工智能综合实验箱功能简介及实训支持内容介绍
人工智能·科技
DS随心转小程序8 小时前
DeepSeek井号解决方法
人工智能·aigc·deepseek·ds随心转