深入浅出Pytorch函数——torch.max

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.max

· 深入浅出Pytorch函数------torch.maximum


torch.max有三种输入形式,根据其输入形式及参数的不同有下列三种返回形式:

  • torch.max(input):返回输入张量所有元素的最大值。
  • torch.max(input, dim, keepdim=False, *, out=None):返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。如果keepdimTrue,则输出张量的大小与输入张量的大小相同,但尺寸为1的维度dim除外。否则,dim会被挤压(请参见torch.squeeze()),即输出张量比输入少1个维度。
  • torch.max(input, other, *, out=None):参考torch.maximum

语法

复制代码
torch.max(input) -> Tensor
torch.max(input, dim, keepdim=False, *, out=None) -> (values, indices) 
torch.max(input, other, *, out=None) -> Tensor

参数

  • input:[Tensor] 输入张量
  • dim:[int] 待求最大值维度的索引,即返回值中被收缩维度的索引
  • keepdim:[bool] 是否保持输出张量与输入张量的形状一致,默认为False

实例

复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763,  0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)

>>> a = torch.randn(4, 5)
>>> a
tensor([[ 1.1299, -1.2838, -1.0533, -1.8278,  0.1653],
        [ 0.6461,  0.4583,  1.5229, -1.0642, -1.8352],
        [-0.9679,  1.1227, -0.2506, -0.4781, -0.2027],
        [ 0.2576,  0.7588, -0.1484, -0.0256,  0.7012]])

>>> torch.max(a, 0)
torch.return_types.max(
values=tensor([ 1.1299,  1.1227,  1.5229, -0.0256,  0.7012]),
indices=tensor([0, 2, 1, 3, 3]))

>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([1.1299, 1.5229, 1.1227, 0.7588]),
indices=tensor([0, 2, 1, 1]))
相关推荐
Toky丶1 分钟前
【文献阅读】Optimum Quanto:量化工作流与数学公式整合笔记
人工智能·深度学习·机器学习
橙露2 分钟前
李一舟人工智能 2.0 视频分享:解锁 AI 时代核心竞争力
人工智能
Brian Xia3 分钟前
从 0 开始手写 AI Agent 框架:nano-agentscope(二)框架搭建
人工智能·python·ai
2503_946971863 分钟前
【Virtualization/AGI】2026年度全沉浸式虚拟化架构与AGI沙箱逃逸基准索引 (Benchmark Index)
人工智能·网络安全·系统架构·数据集·元宇宙
guygg885 分钟前
经典信道估计MATLAB实现(含LSMMSE算法)
深度学习·算法·matlab
易晨 微盛·企微管家9 分钟前
2026连锁品牌SCRM系统最新排名:企业微信生态下微盛·企微管家领跑
人工智能·企业微信
新知图书21 分钟前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
乾元21 分钟前
网络切片的自动化配置与 SLA 保证——5G / 专网场景中,从“逻辑隔离”到“可验证承诺”的工程实现
运维·开发语言·网络·人工智能·网络协议·重构
小程故事多_8024 分钟前
RCAgent,基于LLM自主智能体的云平台根因分析实践与探索
人工智能·aigc
CHrisFC25 分钟前
中小型第三方环境检测实验室的数字化破局之选——江苏硕晟LIMS
大数据·运维·人工智能