深入浅出Pytorch函数——torch.max

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.max

· 深入浅出Pytorch函数------torch.maximum


torch.max有三种输入形式,根据其输入形式及参数的不同有下列三种返回形式:

  • torch.max(input):返回输入张量所有元素的最大值。
  • torch.max(input, dim, keepdim=False, *, out=None):返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。如果keepdimTrue,则输出张量的大小与输入张量的大小相同,但尺寸为1的维度dim除外。否则,dim会被挤压(请参见torch.squeeze()),即输出张量比输入少1个维度。
  • torch.max(input, other, *, out=None):参考torch.maximum

语法

复制代码
torch.max(input) -> Tensor
torch.max(input, dim, keepdim=False, *, out=None) -> (values, indices) 
torch.max(input, other, *, out=None) -> Tensor

参数

  • input:[Tensor] 输入张量
  • dim:[int] 待求最大值维度的索引,即返回值中被收缩维度的索引
  • keepdim:[bool] 是否保持输出张量与输入张量的形状一致,默认为False

实例

复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763,  0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)

>>> a = torch.randn(4, 5)
>>> a
tensor([[ 1.1299, -1.2838, -1.0533, -1.8278,  0.1653],
        [ 0.6461,  0.4583,  1.5229, -1.0642, -1.8352],
        [-0.9679,  1.1227, -0.2506, -0.4781, -0.2027],
        [ 0.2576,  0.7588, -0.1484, -0.0256,  0.7012]])

>>> torch.max(a, 0)
torch.return_types.max(
values=tensor([ 1.1299,  1.1227,  1.5229, -0.0256,  0.7012]),
indices=tensor([0, 2, 1, 3, 3]))

>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([1.1299, 1.5229, 1.1227, 0.7588]),
indices=tensor([0, 2, 1, 1]))
相关推荐
jndingxin1 小时前
OpenCV CUDA模块中矩阵操作------降维操作
人工智能·opencv
MARS_AI_1 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
Trent19851 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
Blossom.1184 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E4 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese4 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz4 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin4 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区5 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技