线性代数(主题篇):第三章:向量组 、第四章:方程组

文章目录

第3章 n维向量

1.概念

§ 3 §3 §3 向量组 { ①部分相关,整体相关 ②整体无关,部分无关 ③低维无关,高维无关 ④高维相关,低维相关 \begin{cases} ①部分相关,整体相关\\ ②整体无关,部分无关\\ ③低维无关,高维无关\\ ④高维相关,低维相关 \end{cases} ⎩ ⎨ ⎧①部分相关,整体相关②整体无关,部分无关③低维无关,高维无关④高维相关,低维相关

(1)n维单位列向量

α = ( a 1 a 2 a 3 . . . a n ) , α T = ( a 1 , a 2 , a 3 , . . . , a n ) α=\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ ...\\ a_n \end{array}\right),α^T=(a_1,a_2,a_3,...,a_n) α= a1a2a3...an ,αT=(a1,a2,a3,...,an)

性质:若α是n维列向量,则

①一列乘一行,是矩阵: α α T αα^T ααT 是 n × n n×n n×n阶方阵

②一行乘一列,是一个数: α T α = ∣ ∣ α ∣ ∣ 2 α^Tα=||α||^2 αTα=∣∣α∣∣2

  1. t r ( α α T ) = α T α tr(αα^T)=α^Tα tr(ααT)=αTα

  2. r ( α α T ) = 1 r(αα^T)=1 r(ααT)=1

  3. ( α α T ) T = α α T , ∴ α ⋅ α T (αα^T)^T=αα^T,∴α·α^T (ααT)T=ααT,∴α⋅αT是n阶实对称方阵,可以相似对角化,
    α ⋅ α T ∼ ( 1 0 . . . 0 ) α·α^T\sim\left(\begin{array}{cc} 1 & & \\ & 0 & \\ & & ...\\ & & & 0 \end{array}\right) α⋅αT∼ 10...0


例题1:17年5.

分析:不可逆,即|A|=λ₁λ₂λ₃...=0,即有0特征值

α α T ∼ ( 1 0 . . . 0 ) αα^T\sim\left(\begin{array}{cc} 1 & & \\ & 0 & \\ & & ...\\ & & & 0 \end{array}\right) ααT∼ 10...0 ,显然 E − α α T E-αα^T E−ααT有零特征值,不可逆

答案:A


2.向量、向量组的的线性关系(线性相关性)

(1)线性表示 :AX=β

若存在常数 k 1 , k 2 , . . . , k s , k_1,k_2,...,k_s, k1,k2,...,ks,使得 α = k 1 β 1 + k 2 β 2 + . . . + k s β s , α = k_1β_1+ k_2β_2+...+ k_sβ_s, α=k1β1+k2β2+...+ksβs,则称向量 α α α是向量组 β 1 , β 2 , . . . , β s β_1,β_2,...,β_s β1,β2,...,βs的线性组合 ,或称向量 α α α可被向量组 β 1 , β 2 , . . . , β s β_1,β_2,...,β_s β1,β2,...,βs线性表示(线性表出)

哪个向量前面的系数不为0,这个向量就可以被其余向量线性表示


例题1:03年10.

答案:D

例题2:数二 21年9.   线性表示

分析:

答案:D

例题3:20年6.   直线的点向式方程→直线的参数方程→直线参数方程的向量形式 + 线性表示

分析:

答案:C


(2)线性相关、线性无关: AX=0

①线性相关

1.定义:设向量组α12,...,αs,若存在不全为0的数k1,k2,...,ks,使 k 1 α 1 + k 2 α 2 + . . . + k s α s = 0 k_1α_1+k_2α_2+...+k_sα_s=0 k1α1+k2α2+...+ksαs=0,则称向量组α12,...,αs线性相关

2.线性相关的充要条件:α12,...,αs中至少有一个向量可以被其他向量线性表示

线性相关的向量组中,系数不为0的向量,可由其他向量线性表示

3.线性相关的等价条件:

⇦⇨ 至少有一个向量可由其余n-1个向量线性表出

4.通过初等变换,无关 可变 相关,但 已相关 不可回 无关

5.含有零向量成比例向量 的向量组,必线性相关
显然,若向量组中有零向量,则向量组线性相关。(可取零向量α0的系数k0为任意非零常数,破坏了线性无关的定义。)
即含有零向量的向量组线性相关。
本来线性无关的向量组,加入一个零向量,它们就线性相关了。可见零向量就是一个润滑剂

②线性无关

1.定义:设向量组α12,...,αs,若不存在不全为0(仅存在全为0)的数k1,k2,...,ks,使k1α1+k2α2+...+ksαs=0,则称向量组α12,...,αs线性无关

2.推论:设向量组α12,...,αs线性无关,但向量组α12,...,αs,β线性相关。则向量β可由向量组α12,...,αs线性表示,且表示法唯一。

3.线性无关的等价条件:

①行列式|A|≠0

②A可逆

③满秩:r(A)=n

④AX=0仅有零解

⑤向量组不成比例

③线性相关性7大定理

1.线性相关 ⇦⇨ 至少有一个向量可由其余n-1向量线性表出

线性无关 ⇦⇨ 任一向量均不能由其余n-1个向量线性表出

2.原来无关,加一个相关,则新加的可被原向量组 唯一线性表示

证明:

非0不可由0表示 :若向量α第k行非0,其他向量第k行均为0,则α不可由其他向量线性表示

0向量可由非0向量表示:零向量 = 0×非零向量

3.以少表多,多的相关、秩多的可以表示秩少的

高维空间可表示低维空间,反之不可 【秩多的可以表示秩少的】

4.Ax=0 仅有零解,A线性无关;有非零解,A线性相关

①n<m:必相关

方程个数<未知数个数,即维数<个数 ,则线性相关

n维向量空间,若向量组线性无关 ,最多只能有n个向量。即维数≥个数

②n=m:看行列式

③n>m:见定理6、7 + 方程组结论

5.①β可由向量组α₁,α₂,...,αm线性表出 ⇦⇨ An×mx = β 有解 ⇦⇨ r(A)=r(A,β)

②β不可由向量组α₁,α₂,...,αm线性表出 ⇦⇨ An×mx = β 无解 ⇦⇨ r(A)≠r(A,β)

6.向量个数的增减:

①部分相关,整体相关。

②整体无关,部分无关。

7.维数的增减:

①原来无关,延长必无关 【低维无关,高维无关】

②原来相关,缩短必相关 【高维相关,低维相关】


例题0:张宇30讲 例题3.6   抽象型向量组的线性相关性,用定义法

答案:

例题1:12年05.

分析:

法一:线性相关的充要条件:线性相关⇦⇨行列式=0

∵|α134|=0,∴α1、α3、α4线性相关

法二:线性相关的充分条件:线性相关⇨成比例

∵α34=(0,0,c3+c4)T,与α1成比例,∴α1、α3、α4线性相关

答案:C

例题2:06年11.

分析:

若已经相关了,则初等变换后依然相关,不能再变回无关了。(若变换后是无关,则变换前肯定也得是无关)

若本来无关,通过变换可能相关。

答案:A

例题3:06年11.真题的变式

答案:C

例题4:14年6.   线性无关、必要性与充分性

分析:

①必要性成立,是必要条件

②充分性不成立,是非充分条件(若向量组中有一个零向量,则该向量组线性相关)

答案:A


3.极大线性无关组、等价向量组、向量组的秩

1.极大线性无关组

(1)概念

①线性无关

②向量组中任意向量均可由极大线性无关组线性表出

(2)性质

①极大线性无关组一般不唯一,但其成员个数是唯一的。极大线性无关组是该向量组的最简小组

②向量组的秩:①极大线性无关组中成员的个数 ②向量组中线性无关的向量个数 ③秩为该向量组所张成的向量空间的维数

(3)找极大线性无关组的步骤

①将列向量们组成矩阵A,作初等行变换化为行阶梯形矩阵,确定r(A)

②按列找出其中一个秩为r(A)的子矩阵,即为一个极大线性无关组

2.等价向量组

1.矩阵等价 :①同型 ②秩等:r(A)=r(B)
向量组等价:①同维 ②r(A)=r(B)=r(A,B) ,即两个向量组可以相互线性表出

2.初等行变换:行向量组等价

初等列变换:列向量组等价

等价矩阵和等价向量组


例题1:23李林四(一)5.   向量组等价:型同、秩等、相互表出

分析:

答案:B

例题2:13年5.

答案:B

例题3:00年9.

分析:

答案:D


3.向量组的秩

1.向量组的秩的概念:

①向量组 α 1 , α 2 , . . . , α s α_1,α_2,...,α_s α1,α2,...,αs 的极大线性无关组 α i 1 , α i 2 , . . . , α i r α_{i_1},α_{i_2},...,α_{i_r} αi1,αi2,...,αir 中所含向量的个数r 为 向量组的秩,记作 r ( α 1 , α 2 , . . . , α s ) = r r(α_1,α_2,...,α_s)=r r(α1,α2,...,αs)=r

②向量组中线性无关的向量个数

③秩为该向量组所张成的向量空间的维数

2.性质:

①矩阵的秩 = 行秩 = 列秩 (三秩相等)

②秩大的表示秩小的,可被线性表出的秩小

4.向量空间

(1)向量空间的概念

过渡矩阵、坐标、基、维数

①维数: R n {\rm R}^n Rn 指n维向量空间,由n个线性无关的n维向量张成

:证明向量组为R3的基,只需要证明向量组中各向量线性无关

过渡矩阵 : A P = B AP=B AP=B,则 过渡矩阵 P = A − 1 B P=A^{-1}B P=A−1B

坐标:向量 = 坐标·基

基变换、过渡矩阵

坐标变换

(2)基

向量空间的基 的2个必要条件:设V为向量空间,若r个向量α12,...,αr∈V,且满足

(1)α12,...,αr线性无关 【证明向量组为R3的基,只需要证明向量组中各向量线性无关】

(2)V中任意向量都可由α12,...,αr线性表示

则向量组α12,...,αr称为向量空间V的一个基,r称为向量空间V的维数,并称V为r维向量空间

的概念类似极大线性无关组基础解系

若把向量空间V看作向量组,则由极大线性无关组的等价定义可知,V的基就是向量组的极大无关组,V的维数就是向量组的秩。


例题:15年20(1)


(3)基变换的过渡矩阵

求A基到B基的过渡矩阵:(右乘列变换)
AP=B,则过渡矩阵 P=A-1B


例题1:03年4.

分析: A P = B ∴ P = A − 1 B AP=B ∴P=A^{-1}B AP=B∴P=A−1B。注意二阶求逆时,先求A*,还要除以|A|。这里|A|=-1

答案: ( 2 3 − 1 − 2 ) \left(\begin{array}{cc} 2 & 3 \\ -1 & -2 \end{array}\right) (2−13−2)

例题2:19年20.

分析:

(2)①证明3个向量是R3的基,只需证明它们线性无关 [向量的基线性无关]

②求A基到B基的过渡矩阵:
AP=B,则过渡矩阵 P=A-1B

答案:


(4)向量在基下的坐标

向量 = 坐标·基


例题0:

例题1:23李林四(二)15.

分析:

答案: ( 2 2 , 2 , − 2 2 ) (\dfrac{\sqrt{2}}{2},\sqrt{2},-\dfrac{\sqrt{2}}{2}) (22 ,2 ,−22 )

例题2:15年20.

分析:

(1)证明向量组是R3的一个基,只需要证明向量组线性无关

(2)坐标


第4章 线性方程组

(一)具体型线性方程组

1.齐次线性方程组 Ax=0

齐次线性方程组 A m × n x = 0 A_{m×n}x=0 Am×nx=0

m为所给方程个数,n为未知数个数。m<n时就有自由变量


例题:18年20.(1)


(1)有解的条件:齐次线性方程组解的判别

AX=0,齐次必然有解。

① r ( A ) = n r(A)=n r(A)=n ( α 1 , α 2 , . . . , α n α_1,α_2,...,α_n α1,α2,...,αn线性无关):唯一零解。

② r ( A ) < n r(A)<n r(A)<n ( α 1 , α 2 , . . . , α n α_1,α_2,...,α_n α1,α2,...,αn线性相关):无穷多个非零解 和零解 。且有n-r个线性无关解 (用这n-r个线性无关解,来表示这无穷多个解)

A x = 0 Ax=0 Ax=0的无穷多解是一个"解空间",用 k 1 ξ 1 + k 2 ξ 2 + . . . , k n − r ξ n − r k_1ξ_1+k_2ξ_2+...,k_{n-r}ξ_{n-r} k1ξ1+k2ξ2+...,kn−rξn−r表示(s=n-r)

(2)解的性质:齐次解的性质
解的叠加性:解的线性组合也是解
(3)基础解系、通解的结构
①基础解系

1.基础解系的定义:

设 ξ 1 , ξ 2 , . . . , ξ n − r ξ_1,ξ_2,...,ξ_{n-r} ξ1,ξ2,...,ξn−r满足

是方程组 A x = 0 Ax=0 Ax=0的解

线性无关

有s=n-r个 。方程组 A x = 0 Ax=0 Ax=0的任一解向量均可由 ξ 1 , ξ 2 , . . . , ξ n − r ξ_1,ξ_2,...,ξ_{n-r} ξ1,ξ2,...,ξn−r线性表出

则称 ξ 1 , ξ 2 , . . . , ξ n − r ξ_1,ξ_2,...,ξ_{n-r} ξ1,ξ2,...,ξn−r 为 A x = 0 Ax=0 Ax=0 的基础解系。

基础解系是齐次方程组 A x = 0 Ax=0 Ax=0 的解向量集合的极大线性无关组。

2.基础解系的求法:见(4)求解方法与步骤的前三步

②通解的结构

(1)齐次

①先求出 n − r ( A ) n-r(A) n−r(A)个线性无关的基础解系

②每一个基础解系前面加一个 k i k_i ki,基础解系的线性组合即为齐次线性方程组的通解。

则齐次方程组的通解为: X = k 1 ξ 1 + k 2 ξ 2 + k 3 ξ 3 + . . . k n − r ξ n − r X=k_1ξ_1+k_2ξ_2+k_3ξ_3+...k_{n-r}ξ_{n-r} X=k1ξ1+k2ξ2+k3ξ3+...kn−rξn−r

(2)非齐次

若非齐次方程组 A X = β AX=β AX=β的特解为 β β β,则非齐次方程组的通解为: X = k 1 ξ 1 + k 2 ξ 2 + k 3 ξ 3 + . . . + . . . + k n − r ξ n − r + β X=k_1ξ_1+k_2ξ_2+k_3ξ_3+...+...+k_{n-r}ξ_{n-r}+β X=k1ξ1+k2ξ2+k3ξ3+...+...+kn−rξn−r+β

通解形成"s维解空间",s=n-r

③自由变量

(1)谁是自由变量:化行阶梯/行最简矩阵时,不在直角边上的 x i x_i xi为自由变量

(2)自由变量/线性无关的解向量的个数: n − r ( A ) n-r(A) n−r(A)

(3)自由变量的设置:

①1个自由变量:1

②2个自由变量: ( 1 0 ) , ( 0 1 ) \binom{1}{0},\binom{0}{1} (01),(10)

③3个自由变量: ( 1 0 0 ) \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) 100 , ( 0 1 0 ) \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) 010 , ( 0 0 1 ) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) 001


例题1:14年20

分析:

(2)A3×4B4×3=E3×3

由于A和B都不是方阵,故AB都不可逆,更没有行列式。

考虑拆分,B=(b1,b2,b3),E=(e1,e2,e3)。则AB=E被拆成Ab1=e1,Ab2=e2,Ab3=e3

bi=kiξ+特解,k为任意常数


(4)求解方法和步骤

2.基础解系(前3步)、通解求法:

把A化为行阶梯/行最简矩阵 (方程组经初等行变换转化为同解方程组)

找出一个秩为r=r(A)的子矩阵,基础解系为s=n-r个,把n-r(A)个 x i x_i xi设为自由变量 。(有同阶的才能设为自由变量)

(例如n=5,r(A)=3,s=n-r=5-3=2,基础解系有2个成员 ξ 1 , ξ 2 ξ_1,ξ_2 ξ1,ξ2

设 x 4 , x 5 x_4,x_5 x4,x5为自由变量,则 ξ 1 , ξ 2 ξ_1,ξ_2 ξ1,ξ2的最后两维:(1,0) (0,1),即 ξ 1 = ( , , 1 , 0 ) T , ξ 2 = ( , , 0 , 1 ) T ξ_1=( , , 1,0)^T,ξ_2=( , , 0,1 )^T ξ1=(,,1,0)T,ξ2=(,,0,1)T。

根据行阶梯/行最简矩阵,由最后一行倒着开始求其余变量的值,直至第一行,求出一个解向量 ξ 1 ξ_1 ξ1 ;再从最后一行开始求,得到第二个解向量 ξ 2 ξ_2 ξ2;直至求完所有解向量 ξ n − r ξ_{n-r} ξn−r

④齐次线性方程组的通解为: k 1 ξ 1 + k 2 ξ 2 + . . . + k n − r ξ n − r k_1ξ_1+k_2ξ_2+...+k_{n-r}ξ_{n-r} k1ξ1+k2ξ2+...+kn−rξn−r


例题1:19年13.

分析:

答案: X = k ( 1 − 2 1 ) X=k\left(\begin{array}{c} 1 \\ -2 \\ 1 \end{array}\right) X=k 1−21 ,k为任意常数


2.非齐次线性方程组 Ax=β

非齐次线性方程组 Am×nx=β,可组合成AX=B

①方程组形式: A X = β AX=β AX=β

②向量形式:

①方程组的解 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn,就是向量与向量之间的表示系数

②齐次线性方程组Ax=0,称为非齐次线性方程组Ax=β的导出组

(1)有解的条件:非齐次线性方程组解的判别

① r ( A ) ≠ r ( A , β ) r(A)≠r(A,β) r(A)=r(A,β) (即 r(A)+1=r(A,β),β不能由α₁,α₂,α₃线性表示):非齐次线性方程组无解

② r ( A ) = r ( A , β ) r(A)=r(A,β) r(A)=r(A,β) (β可由α₁,α₂,α₃线性表示):非齐次线性方程组 AX=β有解

③ r ( A ) = r ( A , β ) = n r(A)=r(A,β)=n r(A)=r(A,β)=n (β可由α₁,α₂,...,αn线性表示且表示法唯一):非齐次线性方程组有唯一解

④ r ( A ) = r ( A , β ) < n r(A)=r(A,β)<n r(A)=r(A,β)<n (β可由α₁,α₂,...,αn线性表示且表示法不唯一):非齐次线性方程组有无穷多解

(2)解的性质:非齐次解的性质

①非齐次特解做差,是齐次特解

②非齐次通解:齐次通解 + 非齐次特解

(3)求解方法和步骤

①求齐次方程组的基础解系,进而求齐次方程组的通解 k 1 ξ 1 + k 2 ξ 2 + . . . k n − r ξ n − r k_1ξ_1+k_2ξ_2+...k_{n-r}ξ_{n-r} k1ξ1+k2ξ2+...kn−rξn−r 【注意,基础解系是齐次的,等式右边为0】

求特解 η η η:令自由项均为0,等式右边为自由项 β i β_i βi。从最后一行开始,代入求解,直至第一行

③拼起来,即为非齐通解


例题1:23李林六套卷(二)15.

分析:β不能由α₁,α₂,α₃线性表示,即非齐次线性方程组无解, r ( A ) ≠ r ( A , β ) r(A)≠r(A,β) r(A)=r(A,β)

答案:0

例题2:12年20(2)

分析:

(2)Ax=β有无穷多解,则 r ( A ) = r ( A ˉ ) < n r(A)=r(\bar{A})<n r(A)=r(Aˉ)<n,即r(A)<n,即 |A|=0

化为行最简后,先求齐次解Ax=0得基础解系ξ=(1,1,1,1)T。特解即为此时的β'=(0,-1,0,0)T。通解X=kξ+β'=k(1,1,1,1)T+(0,-1,0,0)T,k为任意常数

例题3:13年20.

分析:设 C = ( x 1 x 2 x 3 x 4 ) C=\left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right) C=(x1x3x2x4),由AC-CA=B得出含x的方程组,写为系数矩阵D的增广矩阵 D ˉ \bar{D} Dˉ,化为行最简矩阵。这时就可以通过非齐次线性方程组解的判别条件 r ( D ) = r ( D ˉ ) r(D)=r(\bar{D}) r(D)=r(Dˉ)来求a,b的值了。求出后把a,b代入 D ˉ \bar{D} Dˉ,求出齐次方程组的基础解析 ξ 1 = ( 1 − 1 1 0 ) ξ_1=\left(\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array}\right) ξ1= 1−110 , ξ 2 = ( 1 0 0 1 ) ξ_2=\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array}\right) ξ2= 1001 ,非齐次通解X= ( x 1 x 2 x 3 x 4 ) = k 1 ξ 1 + k 2 ξ 2 + ( 1 0 0 0 ) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right)=k_1ξ_1+k_2ξ_2+\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array}\right) x1x2x3x4 =k1ξ1+k2ξ2+ 1000

∴ C = ( x 1 x 2 x 3 x 4 ) C=\left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right) C=(x1x3x2x4)=...


(4)非齐次线性方程组的几何意义:3个方程代表3个平面,交点代表解的个数

方程组有3个方程,每个方程代表一个平面。3个平面的交点个数代表方程组的解的个数。

若三个平面相交于同一条直线,则 r ( A ) = r ( A ˉ ) = 2 r(A)=r(\bar{A})=2 r(A)=r(Aˉ)=2


例题1:23李林六套卷(三)7.

分析:3个平面相较于一条直线,则有无穷多个交点,则 r ( A ) = r ( A ˉ ) < 3 r(A)=r(\bar{A})<3 r(A)=r(Aˉ)<3
A ˉ = ( 1 1 b ∣ 3 2 a + 1 b + 1 ∣ 7 0 1 − a 2 b − 1 ∣ 0 ) \bar{A}=\left(\begin{array}{cc} 1 & 1 & b &| \ 3 \\ 2 & a+1 & b+1 &| \ 7 \\ 0 & 1-a & 2b-1 &| \ 0\\ \end{array}\right) Aˉ= 1201a+11−abb+12b−1∣ 3∣ 7∣ 0

显然,第三行要为全0,则a=1,b=1/2

答案:B

例题2:02年10.   系数矩阵秩、增广矩阵秩 用空间中的平面表示

分析:

A.三个平面只有一个交点,方程组有唯一解, r ( A ) = r ( A ˉ ) = 3 r(A)=r(\bar{A})=3 r(A)=r(Aˉ)=3。A❌

B.三个平面相较于同一条直线,即方程组有无穷多个解, r ( A ) = r ( A ˉ ) = 2 < 3 r(A)=r(\bar{A})=2<3 r(A)=r(Aˉ)=2<3。B✔

C.两两相交,互不平行: r ( A ) = 2 , r ( A ˉ ) = 3 r(A)=2,r(\bar{A})=3 r(A)=2,r(Aˉ)=3。 C❌

D.两平面平行,第三个平面与这两个平行平面分别相交: r ( A ) = 2 , r ( A ˉ ) = 3 r(A)=2,r(\bar{A})=3 r(A)=2,r(Aˉ)=3。D❌

答案:B

例题3:19年6.

答案:A


(二)抽象型线性方程组



4. 就是系数


例题1:基础30讲线代分册   求非齐次线性方程组的通解、解的性质

分析:

①非齐通的解结构:非齐通 = 齐通 + 非齐特

②解的性质:i. η 1 − η 2 η_1-η_2 η1−η2为齐次特解 ii. 1 2 ( η 1 + η 2 ) \dfrac{1}{2}(η_1+η_2) 21(η1+η2)为非齐次特解, 1 3 ( η 3 + 2 η 2 ) \dfrac{1}{3}(η_3+2η_2) 31(η3+2η2)为非齐次特解 iii. 1 2 ( η 1 + η 2 ) − 1 3 ( η 3 + 2 η 2 ) \dfrac{1}{2}(η_1+η_2)-\dfrac{1}{3}(η_3+2η_2) 21(η1+η2)−31(η3+2η2)也为齐次通解,乘6倍后 3 ( η 1 + η 2 ) − 2 ( η 3 + 2 η 2 ) 3(η_1+η_2)-2(η_3+2η_2) 3(η1+η2)−2(η3+2η2)仍为齐次通解

本题不必求出 η 1 , η 2 , η 3 η_1,η_2,η_3 η1,η2,η3各自的值

答案:

例题2:

分析:

① r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)≤min\{ r(A),r(B)\} r(AB)≤min{r(A),r(B)}:由题得r(AB)=2≤min{ r(A),r(B} ∴r(A)≥2,r(B)≥2

又∵秩=行秩=列秩≤min{m,n},∴r(A)≤2,r(B)≤2

故r(A)=r(B)=2

②线性无关解的个数 s = n − r s=n-r s=n−r
s A = n A − r ( A ) = 3 − 2 = 1 s_A=n_A-r(A)=3-2=1 sA=nA−r(A)=3−2=1
s B = n B − r ( B ) = 2 − 2 = 0 s_B=n_B-r(B)=2-2=0 sB=nB−r(B)=2−2=0

答案:B

例题3:

分析:

①s=n-r(A)=1 ∴r(A)=3 ∴r(A*)=1 ∴s*=n-r(A*)=3 排除AB

②(1,0,1,0)T是Ax=0的一个基础解系(其中A=(α₁,α₂,α₃,α₄)),即α₁+α₃=0,即α₁与α₃能相互线性表示,线性相关。故A*x=0的基础解系只能选 124或234。选D

答案:D

例题4:

答案:


(三)方程组的公共解、同解方程组

1.方程组的公共解

①齐次线性方程组 A m × n x = 0 A_{m×n}x=0 Am×nx=0和 B m × n x = 0 B_{m×n}x=0 Bm×nx=0的公共解,是满足方程组 [ A B ] x = 0 \left[\begin{array}{ccc}A\\B\end{array}\right]x=0 [AB]x=0的解,即联立求解

②增加约束,使其相等:令 k 1 ξ 1 + k 2 ξ 2 = l 1 η 1 + l 2 η 2 k_1ξ_1+k_2ξ_2=l_1η_1+l_2η_2 k1ξ1+k2ξ2=l1η1+l2η2,找到k1k2关系,将二维解空间化为一维解空间

2.同解方程组

1.定义/概念:两个方程组 A m × n x = 0 A_{m×n}x=0 Am×nx=0 和 B m × n x = 0 B_{m×n}x=0 Bm×nx=0 有完全相同的解,则称它们为同解方程组

2.性质:

A x = 0 Ax=0 Ax=0 与 B x = 0 Bx=0 Bx=0 为同解方程组

⇦⇨解完全相同:即Ax=0的解满足Bx=0,且Bx=0的解满足Ax=0 (互相把解代入,求出结果即可)

⇦⇨A与B的行向量组为等价向量组

⇦⇨ r ( A ) = r ( B ) = r ( A B ) r(A)=r(B)=r\dbinom{A}{B} r(A)=r(B)=r(BA)


例题1:

例题2:设Am×n,证明r(A)=r(ATA)

证明:

∴r(A)=r(AT)=r(ATA)=r(AAT),对任意Am×n均成立

例题3:22年6.

分析:

①仅有零解 ⇦⇨ 系数矩阵满秩

②齐次方程组的同解变形 ⇦⇨ 矩阵的初等行变换

答案:C


相关推荐
你要飞20 小时前
考研线代第三课:向量组
笔记·线性代数·考研·矩阵
一碗姜汤2 天前
【统计基础】卡尔曼滤波,矩阵对迹求导,Joseph Form,条件数
线性代数·矩阵
sunfove2 天前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
程序员黄老师2 天前
主流向量数据库全面解析
数据库·大模型·向量·rag
ComputerInBook2 天前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星2 天前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤2 天前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫2 天前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
愚公搬代码2 天前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang3 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵