【深度学习】yolov5以及yolov8的微调后的模型精度对比

文章目录

  • 前言
  • [1. 训练](#1. 训练)
    • [1.1 yolov5 的 yolov5m6](#1.1 yolov5 的 yolov5m6)
    • [1.2 yolov5 的 yolov5l6](#1.2 yolov5 的 yolov5l6)
    • [1.3 yolov8 的训练](#1.3 yolov8 的训练)
  • 结论:

前言

做了一个烟火识别,用了2W张图片,标注包括:fire,smoke 。在coco80类的模型上进行ft, 借此机会进行比较一下。

  1. yolov5 yolov5m6
  2. yolov5 yolov5l6
  3. yolov8 模型待定
    图片共:20113 张 按8:1:1 区分train,val 和 test
    数据集:
    train: Scanning '/data_share/data_share/fire_smoke_iter20230720/firesmoketaobao/train.cache' images and labels... 16090 found, 0 missing, 1019 empty, 0 corrupt: 100%|██████████| 16090/16090
    val: Scanning '/data_share/data_share/fire_smoke_iter20230720/firesmoketaobao/val.cache' images and labels... 2011 found, 0 missing, 123 empty, 0 corrupt: 100%|██████████| 2011/2011 [00:00<?,

1. 训练

1.1 yolov5 的 yolov5m6

所用命令:

bash 复制代码
 python -m torch.distributed.launch --nproc_per_node=2 train.py --weights weights/yolov5m6_coco.pt --img 640 --epoch 500 --data fire_smoke.yaml --batch-size 24 --workers 8 --save-period 20

资源占用情况:

最终结果:

bash 复制代码
 00%|██████████| 671/671 [02:05<00:00,  4.87it/s]                                                                                                                                                    173/499      7.22G    0.02312    0.01991   0.005421         26        640: 1                                                                                                                00%|██████████| 671/671 [02:05<00:00,  5.35it/s]                                                                                                                                                
                 Class     Images  Instances          P          R      mAP50
                   all       2011       3236       0.81       0.76      0.825                                                                                                                      0.556

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    174/499      7.22G    0.02303    0.01993   0.005404         16        640: 1
                 Class     Images  Instances          P          R      mAP50
                   all       2011       3236      0.809      0.757      0.824                                                                                                                      0.556

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    175/499      7.22G    0.02297    0.01974   0.005403         14        640: 1
                 Class     Images  Instances          P          R      mAP50
                   all       2011       3236      0.808      0.758      0.823                                                                                                                      0.556

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    176/499      7.22G    0.02281       0.02   0.005223         17        640: 1
                 Class     Images  Instances          P          R      mAP50
                   all       2011       3236      0.807      0.759      0.823                                                                                                                      0.555
Stopping training early as no improvement observed in last 100 epochs. Best resu                                                                                                                lts observed at epoch 76, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e. `python tr                                                                                                                ain.py --patience 300` or use `--patience 0` to disable EarlyStopping.

177 epochs completed in 6.973 hours.
Optimizer stripped from runs/train/exp5/weights/last.pt, 71.1MB
Optimizer stripped from runs/train/exp5/weights/best.pt, 71.1MB

Validating runs/train/exp5/weights/best.pt...
Fusing layers...
Model summary: 276 layers, 35254692 parameters, 0 gradients, 49.0 GFLOPs
                 Class     Images  Instances          P          R      mAP50
                   all       2011       3236      0.815       0.75      0.829                                                                                                                      0.559
                  fire       2011       1791      0.792      0.724      0.801                                                                                                                      0.527
                 smoke       2011       1445      0.839      0.777      0.857                                                                                                                       0.59
Results saved to runs/train/exp5

1.2 yolov5 的 yolov5l6

所用命令

bash 复制代码
 nohup python -m torch.distributed.launch --nproc_per_node=2 train.py --weights weights/yolov5l6.pt --img 640 --epoch 500 --data fire_smoke.yaml --batch-size 24 --workers 8 --save-period 20 >yolov5l6.log 2>&1 &

相同的参数,large模型是比较吃显存的

bash 复制代码
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A     26007      C   ...39_torch1.10.1/bin/python     9325MiB |
|    1   N/A  N/A     26008      C   ...39_torch1.10.1/bin/python     8835MiB |
+-----------------------------------------------------------------------------+
Fri Jul 21 17:28:53 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.63.01    Driver Version: 470.63.01    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:0B:00.0 Off |                  N/A |
| 96%   69C    P2   314W / 350W |   9331MiB / 12053MiB |     97%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  Off  | 00000000:1B:00.0 Off |                  N/A |
| 88%   65C    P2   309W / 350W |   8837MiB / 12053MiB |     90%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A     26007      C   ...39_torch1.10.1/bin/python     9325MiB |
|    1   N/A  N/A     26008      C   ...39_torch1.10.1/bin/python     8835MiB |
+-----------------------------------------------------------------------------+

然而它报错了:

版本信息:py39_torch1.10.1

bash 复制代码
      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
     30/499      7.79G    0.02661    0.02219   0.006819         11        640: 100%|██████████| 671/671 [02:58<00:00,  3.76it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 84/84 [00:15<00:00,  5.35it/s]
                   all       2011       3236      0.805      0.742      0.816      0.536

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
     31/499      7.79G    0.02635    0.02204   0.006999         47        640:  72%|███████▏  | 484/671 [02:08<00:50,  3.71it/s]WARNING:torch.distributed.elastic.agent.server.api:Received 1 death signal, shutting down workers
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 26007 closing signal SIGHUP
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 26008 closing signal SIGHUP
Traceback (most recent call last):
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/runpy.py", line 197, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/launch.py", line 193, in <module>
    main()
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/launch.py", line 189, in main
    launch(args)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/launch.py", line 174, in launch
    run(args)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/run.py", line 710, in run
    elastic_launch(
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 131, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 252, in launch_agent
    result = agent.run()
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 125, in wrapper
    result = f(*args, **kwargs)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 709, in run
    result = self._invoke_run(role)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 843, in _invoke_run
    time.sleep(monitor_interval)
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 60, in _terminate_process_handler
    raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval)
torch.distributed.elastic.multiprocessing.api.SignalException: Process 25973 got signal: 1
(base) [jianming_ge@localhost fire_smoke_detect]$
bash 复制代码
      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    166/499      7.81G    0.02208    0.01933   0.005174         15        640: 100%|██████████| 671/671 [02:59<00:00,  3.73it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 84/84 [00:16<00:00,  5.00it/s]
                   all       2011       3236      0.815      0.755      0.819      0.558

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    167/499      7.81G     0.0221    0.01923   0.005168         19        640: 100%|██████████| 671/671 [03:00<00:00,  3.71it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 84/84 [00:16<00:00,  5.00it/s]
                   all       2011       3236      0.813      0.757       0.82      0.558

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
    168/499      7.81G    0.02198    0.01908   0.005147         19        640: 100%|██████████| 671/671 [03:00<00:00,  3.72it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 84/84 [00:16<00:00,  5.11it/s]
                   all       2011       3236      0.815      0.756       0.82      0.558
Stopping training early as no improvement observed in last 100 epochs. Best results observed at epoch 68, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.

169 epochs completed in 9.309 hours.
Optimizer stripped from runs/train/exp7/weights/last.pt, 153.0MB
Optimizer stripped from runs/train/exp7/weights/best.pt, 153.0MB

Validating runs/train/exp7/weights/best.pt...
Fusing layers...
Model summary: 346 layers, 76126356 parameters, 0 gradients, 110.0 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 84/84 [00:20<00:00,  4.14it/s]
                   all       2011       3236      0.809      0.767      0.829      0.561
                  fire       2011       1791      0.787      0.745      0.804      0.532
                 smoke       2011       1445      0.831      0.788      0.855       0.59

由此可见,两个案子差不多~

1.3 yolov8 的训练

这是第一次用yolov8训练,还是有点小激动哦。

yaml 复制代码
train: /data_share/data_share/fire_smoke_iter20230720/firesmoketaobao/train.txt
val: /data_share/data_share/fire_smoke_iter20230720/firesmoketaobao/val.txt
test: /data_share/data_share/fire_smoke_iter20230720/firesmoketaobao/test.txt

# number of classes
nc: 2

# class names
names: ['fire','smoke']
  1. 训练
python 复制代码
cd /home/jianming_ge/workplace/zhongwaiyun/ultralytics-yolov8/ultralytics
yolo task=detect mode=train model=yolov8m.pt data=data/firesmoke.yaml batch=24 epochs=500 imgsz=640 workers=8 device='0,1' save_period=20

注意这里的 model=yolov8m.pt,需要下载,应该是下载到某个.cache 下或者哪里,

我把它放到当前路径下,发现还会下载:

作者说这不是一个bug,bug:https://github.com/ultralytics/ultralytics/issues/2698

复制代码
@lucas-mior YOLOv8n is used for AMP checks prior to training start to decide whether to allow this training mode (as your console printout clearly displays). Your YOLOv8m model will train as normal.

Removing bug label. Please do not raise bug reports for questions.
bash 复制代码
      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
    108/500      5.59G     0.7987     0.7384      1.225         27        640: 100%|██████████| 671/671 [02:09<00:00,  5.17it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 84/84 [00:14<00:00,  5.95it/s]
                   all       2011       3236      0.804      0.761      0.821      0.571

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
    109/500      5.59G     0.8037     0.7485      1.226         20        640: 100%|██████████| 671/671 [02:10<00:00,  5.15it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 84/84 [00:14<00:00,  5.85it/s]
                   all       2011       3236      0.803      0.762      0.821      0.571

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
    110/500       5.6G     0.8024     0.7356      1.222         29        640: 100%|██████████| 671/671 [02:09<00:00,  5.18it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 84/84 [00:17<00:00,  4.82it/s]
                   all       2011       3236      0.803      0.759       0.82      0.571
Stopping training early as no improvement observed in last 50 epochs. Best results observed at epoch 60, best model saved as best.pt.
To update EarlyStopping(patience=50) pass a new patience value, i.e. `patience=300` or use `patience=0` to disable EarlyStopping.

110 epochs completed in 4.434 hours.
Exception in thread Thread-1:
Traceback (most recent call last):
  File "/home/jianming_ge/miniconda3/envs/py39_torch1.10.1/lib/python3.9/threading.py", line 980, in _bootstrap_inner
Optimizer stripped from /home/jianming_ge/runs/detect/train9/weights/last.pt, 52.0MB
Optimizer stripped from /home/jianming_ge/runs/detect/train9/weights/best.pt, 52.0MB

Validating /home/jianming_ge/runs/detect/train9/weights/best.pt...
Model summary (fused): 218 layers, 25840918 parameters, 0 gradients, 78.8 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 84/84 [00:16<00:00,  5.03it/s]
                   all       2011       3236      0.792      0.754      0.821      0.574
                  fire       2011       1791      0.769      0.726      0.792      0.546
                 smoke       2011       1445      0.816      0.783      0.851      0.602
Speed: 0.2ms preprocess, 2.4ms inference, 0.0ms loss, 0.8ms postprocess per image
Results saved to /home/jianming_ge/runs/detect/train9

结论:

三个基本一致!没有明显的好坏之分

相关推荐
mguy_14 小时前
深度学习之人脸表情识别详解
深度学习
babytiger5 小时前
如何将yolo训练图像数据库的某个分类的图像取出来
数据库·yolo·分类
可乐+冰07 小时前
Android 编写高斯模糊功能
android·人工智能·opencv
嘀咕博客8 小时前
SynClub-百度在海外推出的AI社交产品
人工智能·百度·ai工具
AI算法工程师Moxi8 小时前
什么是迁移学习(transfer learning)
人工智能·机器学习·迁移学习
空白到白9 小时前
机器学习-KNN算法
人工智能·算法·机器学习
aliedudu9 小时前
机器学习概述
人工智能·机器学习
love you joyfully9 小时前
循环神经网络——pytorch实现循环神经网络(RNN、GRU、LSTM)
人工智能·pytorch·rnn·深度学习·gru·循环神经网络
袁庭新10 小时前
AI如何辅助创业?年轻人一定要创业
人工智能·创业
GIS开发特训营10 小时前
【智慧城市】2025年中国地质大学(武汉)暑期实训优秀作品(2):智慧城市西安与一带一路
人工智能·信息可视化·智慧城市