【正规方程对波士顿房价数据集进行预测】

数据准备

我们首先需要加载波士顿房价数据集。该数据集包含房屋特征信息和对应的房价标签。

python 复制代码
import pandas as pd
import numpy as np

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

print("数据集大小:{}".format(data.shape))
print("标签大小:{}".format(target.shape))

数据划分

接下来,我们将数据集划分为训练集和测试集。

python 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=8)

正规方程方法

正规方程是线性回归问题的闭式解,它直接计算参数的最优解而无需迭代。我们使用 LinearRegression 类来训练模型,并输出训练集和测试集上的得分、参数和截距。

python 复制代码
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

print("正规方程训练集得分:{:.3f}".format(lr.score(X_train, y_train)))
print("正规方程测试集得分:{:.3f}".format(lr.score(X_test, y_test)))
print("正规方程参数:{}".format(lr.coef_))
print("正规方程截距:{:.3f}".format(lr.intercept_))

模型评估

我们使用均方误差和均方根误差来评估模型的性能。

python 复制代码
from sklearn.metrics import mean_squared_error

y_pred = lr.predict(X_test)

print("正规方程均方误差:{:.3f}".format(mean_squared_error(y_test, y_pred)))
print("正规方程均方根误差:{:.3f}".format(np.sqrt(mean_squared_error(y_test, y_pred))))

可视化

最后,我们将真实值和预测值进行可视化比较,以便更直观地了解模型的拟合效果。

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.plot(range(len(y_test)), y_test, "r", label="y_test")
plt.plot(range(len(y_pred)), y_pred, "g--", label="y_pred")
plt.legend()
plt.show()
相关推荐
嘿嘻哈呀4 分钟前
使用ID3算法根据信息增益构建决策树
决策树·机器学习·信息增益·id3算法
区块链小八歌15 分钟前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 场景
人工智能
禾高网络18 分钟前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc2 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate2 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜2 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien2 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案3 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9213 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习