【正规方程对波士顿房价数据集进行预测】

数据准备

我们首先需要加载波士顿房价数据集。该数据集包含房屋特征信息和对应的房价标签。

python 复制代码
import pandas as pd
import numpy as np

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

print("数据集大小:{}".format(data.shape))
print("标签大小:{}".format(target.shape))

数据划分

接下来,我们将数据集划分为训练集和测试集。

python 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=8)

正规方程方法

正规方程是线性回归问题的闭式解,它直接计算参数的最优解而无需迭代。我们使用 LinearRegression 类来训练模型,并输出训练集和测试集上的得分、参数和截距。

python 复制代码
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

print("正规方程训练集得分:{:.3f}".format(lr.score(X_train, y_train)))
print("正规方程测试集得分:{:.3f}".format(lr.score(X_test, y_test)))
print("正规方程参数:{}".format(lr.coef_))
print("正规方程截距:{:.3f}".format(lr.intercept_))

模型评估

我们使用均方误差和均方根误差来评估模型的性能。

python 复制代码
from sklearn.metrics import mean_squared_error

y_pred = lr.predict(X_test)

print("正规方程均方误差:{:.3f}".format(mean_squared_error(y_test, y_pred)))
print("正规方程均方根误差:{:.3f}".format(np.sqrt(mean_squared_error(y_test, y_pred))))

可视化

最后,我们将真实值和预测值进行可视化比较,以便更直观地了解模型的拟合效果。

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.plot(range(len(y_test)), y_test, "r", label="y_test")
plt.plot(range(len(y_pred)), y_pred, "g--", label="y_pred")
plt.legend()
plt.show()
相关推荐
学好statistics和DS几秒前
感知机的对偶形式是怎么来的
深度学习·神经网络·机器学习
石去皿5 分钟前
大模型面试常见问答
人工智能·面试·职场和发展
Java后端的Ai之路20 分钟前
【AI大模型开发】-RAG 技术详解
人工智能·rag
墨香幽梦客20 分钟前
家具ERP口碑榜单,物料配套专用工具推荐
大数据·人工智能
Coder_Boy_29 分钟前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解
java·数据库·人工智能·spring boot
敏叔V58732 分钟前
从人类反馈到直接偏好优化:AI对齐技术的实战演进
人工智能
琅琊榜首202035 分钟前
AI赋能短剧创作:从Prompt设计到API落地的全技术指南
人工智能·prompt
测试者家园37 分钟前
Prompt、Agent、测试智能体:测试的新机会,还是新焦虑?
人工智能·prompt·智能体·职业和发展·质量效能·智能化测试·软件开发和测试
嗷嗷哦润橘_43 分钟前
从萝卜纸巾猫到桌游:“蒸蚌大开门”的设计平衡之旅
人工智能·算法·游戏·概率论·桌游
悟纤1 小时前
Suno 爵士歌曲创作提示整理 | Suno高级篇 | 第22篇
大数据·人工智能·suno·suno ai·suno api·ai music