【正规方程对波士顿房价数据集进行预测】

数据准备

我们首先需要加载波士顿房价数据集。该数据集包含房屋特征信息和对应的房价标签。

python 复制代码
import pandas as pd
import numpy as np

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

print("数据集大小:{}".format(data.shape))
print("标签大小:{}".format(target.shape))

数据划分

接下来,我们将数据集划分为训练集和测试集。

python 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=8)

正规方程方法

正规方程是线性回归问题的闭式解,它直接计算参数的最优解而无需迭代。我们使用 LinearRegression 类来训练模型,并输出训练集和测试集上的得分、参数和截距。

python 复制代码
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

print("正规方程训练集得分:{:.3f}".format(lr.score(X_train, y_train)))
print("正规方程测试集得分:{:.3f}".format(lr.score(X_test, y_test)))
print("正规方程参数:{}".format(lr.coef_))
print("正规方程截距:{:.3f}".format(lr.intercept_))

模型评估

我们使用均方误差和均方根误差来评估模型的性能。

python 复制代码
from sklearn.metrics import mean_squared_error

y_pred = lr.predict(X_test)

print("正规方程均方误差:{:.3f}".format(mean_squared_error(y_test, y_pred)))
print("正规方程均方根误差:{:.3f}".format(np.sqrt(mean_squared_error(y_test, y_pred))))

可视化

最后,我们将真实值和预测值进行可视化比较,以便更直观地了解模型的拟合效果。

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.plot(range(len(y_test)), y_test, "r", label="y_test")
plt.plot(range(len(y_pred)), y_pred, "g--", label="y_pred")
plt.legend()
plt.show()
相关推荐
itwangyang5207 分钟前
AIDD药物筛选与设计详细方法
人工智能·python
yiersansiwu123d11 分钟前
生成式AI落地潮:从技术狂热到商业价值重构
人工智能·重构
luoganttcc15 分钟前
除了视觉伺服 还有哪些 方法
人工智能
ST小智16 分钟前
2025年创作历程回顾与个人生活平衡
大数据·linux·人工智能
weixin_4379881221 分钟前
范式智能发布“风控哨兵”大模型 引领金融风控新范式
人工智能
哥本哈士奇22 分钟前
使用Gradio构建AI前端 - RAG的QA模块
前端·人工智能·状态模式
5G全域通25 分钟前
面向5G复杂性的下一代运维技术体系:架构、工具与实践
大数据·运维·人工智能·5g·架构
你们补药再卷啦28 分钟前
人工智能算法概览
人工智能·算法
悟纤31 分钟前
续写卡在 2 秒?解决方案全解析|Suno 进阶指南|第 13 篇
人工智能·suno·suno ai·suno api·ai music
RockHopper202539 分钟前
企业运营认知机器人的落地规范说明 —— 一种以工程化实现/商业化落地为目的设计原则
人工智能·llm·认知机器人·认知导向