Yarn 集群的架构和工作原理

Yarn 的基本设计思想是将 MapReduce V1 中的 JobTracker 拆分为两个独立的服务:ResourceManager 和 ApplicationMaster。

ResourceManager 负责整个系统的资源管理和分配,ApplicationMaster 负责单个应用程序的管理。

  1. ResourceManager

    RM 是一个全局的资源管理器,负责整个系统的资源管理和分配,它主要由两个部分组成:调度器(Scheduler)和应用程序管理器(Application Manager)。

    调度器:根据容量、队列等限制条件,将系统中的资源分配给正在运行的应用程序,在保证容量、公平性和服务等级的前提下,优化集群资源利用率,让所有的资源都被充分利用;

    应用程序管理器:负责管理整个系统中的所有的应用程序,包括应用程序的提交、与调度器协商资源以启动 ApplicationMaster、监控 ApplicationMaster 运行状态并在失败时重启它。

  2. ApplicationMaster

    用户提交的一个应用程序会对应于一个 ApplicationMaster,它的主要功能有:

    • 与 RM调度器协商以获得资源,资源以 Container 表示。
    • 将得到的任务进一步分配给内部的任务。
    • 与 NN (NameNode)通信以启动/停止任务。
    • 监控所有的内部任务状态,并在任务运行失败的时候重新为任务申请资源以重启任务。
  3. NodeManager

    NodeManager 是每个节点上的资源和任务管理器,

    一方面,它会定期地向 RM 汇报本节点上的资源使用情况和各个 Container 的运行状态;

    另一方面,它接收并处理来自 AM 的 Container 启动和停止请求。

  4. Container

    Container 是 Yarn 中的资源抽象,封装了各种资源。

    一个应用程序会分配一个 Container,这个应用程序只能使用这个 Container 中描述的资源。

    不同于 MapReduce V1 中槽位 slot 的资源封装,Container 是一个动态资源的划分单位,更能充分利用资源。


我们下期见,拜拜!

相关推荐
Qspace丨轻空间2 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客3 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata4 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表4 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
58沈剑5 小时前
80后聊架构:架构设计中两个重要指标,延时与吞吐量(Latency vs Throughput) | 架构师之路...
架构
拓端研究室TRL7 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗7 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
想进大厂的小王7 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
编码小袁7 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式8 小时前
大数据治理:确保数据的可持续性和价值
大数据