Yarn 集群的架构和工作原理

Yarn 的基本设计思想是将 MapReduce V1 中的 JobTracker 拆分为两个独立的服务:ResourceManager 和 ApplicationMaster。

ResourceManager 负责整个系统的资源管理和分配,ApplicationMaster 负责单个应用程序的管理。

  1. ResourceManager

    RM 是一个全局的资源管理器,负责整个系统的资源管理和分配,它主要由两个部分组成:调度器(Scheduler)和应用程序管理器(Application Manager)。

    调度器:根据容量、队列等限制条件,将系统中的资源分配给正在运行的应用程序,在保证容量、公平性和服务等级的前提下,优化集群资源利用率,让所有的资源都被充分利用;

    应用程序管理器:负责管理整个系统中的所有的应用程序,包括应用程序的提交、与调度器协商资源以启动 ApplicationMaster、监控 ApplicationMaster 运行状态并在失败时重启它。

  2. ApplicationMaster

    用户提交的一个应用程序会对应于一个 ApplicationMaster,它的主要功能有:

    • 与 RM调度器协商以获得资源,资源以 Container 表示。
    • 将得到的任务进一步分配给内部的任务。
    • 与 NN (NameNode)通信以启动/停止任务。
    • 监控所有的内部任务状态,并在任务运行失败的时候重新为任务申请资源以重启任务。
  3. NodeManager

    NodeManager 是每个节点上的资源和任务管理器,

    一方面,它会定期地向 RM 汇报本节点上的资源使用情况和各个 Container 的运行状态;

    另一方面,它接收并处理来自 AM 的 Container 启动和停止请求。

  4. Container

    Container 是 Yarn 中的资源抽象,封装了各种资源。

    一个应用程序会分配一个 Container,这个应用程序只能使用这个 Container 中描述的资源。

    不同于 MapReduce V1 中槽位 slot 的资源封装,Container 是一个动态资源的划分单位,更能充分利用资源。


我们下期见,拜拜!

相关推荐
Codebee几秒前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
掘金-我是哪吒10 分钟前
分布式微服务系统架构第158集:JavaPlus技术文档平台日更-JVM基础知识
jvm·分布式·微服务·架构·系统架构
JohnYan18 分钟前
模板+数据的文档生成技术方案设计和实现
javascript·后端·架构
Da_秀33 分钟前
软件工程中耦合度
开发语言·后端·架构·软件工程
xufwind1 小时前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠2 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
用户21960094442852 小时前
利用布隆过滤器设计亿级用户视频浏览历史过滤系统:方案详解与内存预估
架构
Kookoos2 小时前
ABP VNext + Tye:本地微服务编排与调试
微服务·云原生·架构·tye
DeepSeek大模型官方教程3 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
秋千码途3 小时前
小架构step系列06:编译配置
架构