【传统视觉】模板匹配和卡尺圆检测

模板匹配 粗定位

1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。

2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。

3、函数:

复制代码
result = cv2.matchTemplate(image, templ, method[,mask]);
返回值:一个结果集。类型是单通道32位浮点型

其中image为图像A,templ为模板(图像B),method为匹配方法;
method = 0-5 总共六种方法
参数值 对应数值 解释
cv2.TM_SQDIFF 0 以方差为依据,进行匹配,result值为0表示匹配度最好,值越大,表示匹配度越差
cv2.TM_SQDIFF_NORMED 1 标准(归一化)平方差匹配
cv2.TM_CCORR 2 A与B的像素点相乘,较大则匹配度较高,result的值越小表示匹配度越差,值越大表示匹配度越好
cv2.TM_CCORR_NORMED 3 2的归一化
cv2.TM_CCOEFF 4 模板图像B与A均值的相关性匹配,1表示完美匹配,-1表示垃圾匹配,0表示没得关系
cv2.TM_CCOEFF_NORMED 5 4的归一化

4、配合查找最值方式来找到匹配的位置

复制代码
minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(src[,mask])
src:为单通道数组。
minVal:为返回的最小值,如果没有最小值,则可以是NULL(空值)。
maxVal:为返回的最大值,如果没有最小值,则可以是NULL。
minLoc:为最小值的位置,如果没有最大值,则可以是NULL。
maxLoc:为最大值的位置,如果没有最大值,则可以是NULL。
mask:为用来选取掩模的子集,可选项

示例:

复制代码
rv = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(rv)

卡尺找圆 精细定位

卡尺的原理:

是找N个小矩形ROI里面的灰度值突变的地方。即:遍历每个小矩形ROI,分别找到1个点,这个点是灰度突变的峰值。然后把这N个点拟合成直线或者圆。

相关推荐
R_.L2 分钟前
【QT】常用控件(按钮类控件、显示类控件、输入类控件、多元素控件、容器类控件、布局管理器)
开发语言·qt
Zach_yuan11 分钟前
自定义协议:实现网络计算器
linux·服务器·开发语言·网络
云姜.17 分钟前
java多态
java·开发语言·c++
CoderCodingNo26 分钟前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
陳103033 分钟前
C++:红黑树
开发语言·c++
一切尽在,你来38 分钟前
C++ 零基础教程 - 第 6 讲 常用运算符教程
开发语言·c++
泉-java40 分钟前
第56条:为所有导出的API元素编写文档注释 《Effective Java》
java·开发语言
0思必得040 分钟前
[Web自动化] Selenium处理滚动条
前端·爬虫·python·selenium·自动化
沈浩(种子思维作者)1 小时前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
2301_790300961 小时前
Python数据库操作:SQLAlchemy ORM指南
jvm·数据库·python