【传统视觉】模板匹配和卡尺圆检测

模板匹配 粗定位

1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。

2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。

3、函数:

复制代码
result = cv2.matchTemplate(image, templ, method[,mask]);
返回值:一个结果集。类型是单通道32位浮点型

其中image为图像A,templ为模板(图像B),method为匹配方法;
method = 0-5 总共六种方法
参数值 对应数值 解释
cv2.TM_SQDIFF 0 以方差为依据,进行匹配,result值为0表示匹配度最好,值越大,表示匹配度越差
cv2.TM_SQDIFF_NORMED 1 标准(归一化)平方差匹配
cv2.TM_CCORR 2 A与B的像素点相乘,较大则匹配度较高,result的值越小表示匹配度越差,值越大表示匹配度越好
cv2.TM_CCORR_NORMED 3 2的归一化
cv2.TM_CCOEFF 4 模板图像B与A均值的相关性匹配,1表示完美匹配,-1表示垃圾匹配,0表示没得关系
cv2.TM_CCOEFF_NORMED 5 4的归一化

4、配合查找最值方式来找到匹配的位置

复制代码
minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(src[,mask])
src:为单通道数组。
minVal:为返回的最小值,如果没有最小值,则可以是NULL(空值)。
maxVal:为返回的最大值,如果没有最小值,则可以是NULL。
minLoc:为最小值的位置,如果没有最大值,则可以是NULL。
maxLoc:为最大值的位置,如果没有最大值,则可以是NULL。
mask:为用来选取掩模的子集,可选项

示例:

复制代码
rv = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(rv)

卡尺找圆 精细定位

卡尺的原理:

是找N个小矩形ROI里面的灰度值突变的地方。即:遍历每个小矩形ROI,分别找到1个点,这个点是灰度突变的峰值。然后把这N个点拟合成直线或者圆。

相关推荐
我送炭你添花13 分钟前
Pelco KBD300A 模拟器:06+5.串口实现的逻辑优化、配置管理与协议完善(二次迭代)
python·运维开发
databook15 分钟前
前注意加工:让你的图表抓住读者的眼球
python·数据分析·数据可视化
知行学思20 分钟前
Python配置管理完全指南:从dotenv到pydantic_settings
数据库·python·fastapi·环境变量·配置管理·pydantic·dotenv
nbsaas-boot37 分钟前
Go 项目中如何正确升级第三方依赖(Go Modules 实战指南)
开发语言·后端·golang
wadesir1 小时前
C++基本数据类型详解(零基础掌握C++核心数据类型)
java·开发语言·c++
skywalk81632 小时前
wow文件处理trinitycore的文件处理
开发语言·游戏
一路往蓝-Anbo3 小时前
STM32单线串口通讯实战(五):RTOS架构 —— 线程安全与零拷贝设计
c语言·开发语言·stm32·单片机·嵌入式硬件·观察者模式·链表
Jerryhut3 小时前
Opencv总结7——全景图像拼接
人工智能·opencv·计算机视觉
leiming63 小时前
c++ map容器
开发语言·c++·算法
坚持就完事了3 小时前
JavaScript
开发语言·javascript·ecmascript