【传统视觉】模板匹配和卡尺圆检测

模板匹配 粗定位

1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。

2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。

3、函数:

复制代码
result = cv2.matchTemplate(image, templ, method[,mask]);
返回值:一个结果集。类型是单通道32位浮点型

其中image为图像A,templ为模板(图像B),method为匹配方法;
method = 0-5 总共六种方法
参数值 对应数值 解释
cv2.TM_SQDIFF 0 以方差为依据,进行匹配,result值为0表示匹配度最好,值越大,表示匹配度越差
cv2.TM_SQDIFF_NORMED 1 标准(归一化)平方差匹配
cv2.TM_CCORR 2 A与B的像素点相乘,较大则匹配度较高,result的值越小表示匹配度越差,值越大表示匹配度越好
cv2.TM_CCORR_NORMED 3 2的归一化
cv2.TM_CCOEFF 4 模板图像B与A均值的相关性匹配,1表示完美匹配,-1表示垃圾匹配,0表示没得关系
cv2.TM_CCOEFF_NORMED 5 4的归一化

4、配合查找最值方式来找到匹配的位置

复制代码
minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(src[,mask])
src:为单通道数组。
minVal:为返回的最小值,如果没有最小值,则可以是NULL(空值)。
maxVal:为返回的最大值,如果没有最小值,则可以是NULL。
minLoc:为最小值的位置,如果没有最大值,则可以是NULL。
maxLoc:为最大值的位置,如果没有最大值,则可以是NULL。
mask:为用来选取掩模的子集,可选项

示例:

复制代码
rv = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(rv)

卡尺找圆 精细定位

卡尺的原理:

是找N个小矩形ROI里面的灰度值突变的地方。即:遍历每个小矩形ROI,分别找到1个点,这个点是灰度突变的峰值。然后把这N个点拟合成直线或者圆。

相关推荐
夏末蝉未鸣0112 分钟前
python transformers笔记(TrainingArguments类)
python·自然语言处理·transformer
德育处主任Pro16 分钟前
「py数据分析」04如何将 Python 爬取的数据保存为 CSV 文件
数据库·python·数据分析
咸鱼鲸26 分钟前
【PyTorch】PyTorch中数据准备工作(AI生成)
人工智能·pytorch·python
遇见你很高兴1 小时前
Pycharm中体验通义灵码来AI辅助编程
python
PyAIExplorer1 小时前
图像梯度处理与边缘检测:OpenCV 实战指南
人工智能·opencv·计算机视觉
大虫小呓1 小时前
50个Python处理Excel示例代码,覆盖95%日常使用场景-全网最全
python·excel
大模型真好玩1 小时前
做题王者,实战拉跨!是时候给马斯克的Grok4泼盆冷水了!(Grok 4模型详细测评报告)
人工智能·python·mcp
九章云极AladdinEdu1 小时前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
羊八井1 小时前
使用 Earth2Studio 和 AI 模型进行全球天气预测:太阳辐照
pytorch·python·nvidia
向左转, 向右走ˉ1 小时前
PyTorch随机擦除:提升模型抗遮挡能力
人工智能·pytorch·python·深度学习