【传统视觉】模板匹配和卡尺圆检测

模板匹配 粗定位

1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。

2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。

3、函数:

复制代码
result = cv2.matchTemplate(image, templ, method[,mask]);
返回值:一个结果集。类型是单通道32位浮点型

其中image为图像A,templ为模板(图像B),method为匹配方法;
method = 0-5 总共六种方法
参数值 对应数值 解释
cv2.TM_SQDIFF 0 以方差为依据,进行匹配,result值为0表示匹配度最好,值越大,表示匹配度越差
cv2.TM_SQDIFF_NORMED 1 标准(归一化)平方差匹配
cv2.TM_CCORR 2 A与B的像素点相乘,较大则匹配度较高,result的值越小表示匹配度越差,值越大表示匹配度越好
cv2.TM_CCORR_NORMED 3 2的归一化
cv2.TM_CCOEFF 4 模板图像B与A均值的相关性匹配,1表示完美匹配,-1表示垃圾匹配,0表示没得关系
cv2.TM_CCOEFF_NORMED 5 4的归一化

4、配合查找最值方式来找到匹配的位置

复制代码
minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(src[,mask])
src:为单通道数组。
minVal:为返回的最小值,如果没有最小值,则可以是NULL(空值)。
maxVal:为返回的最大值,如果没有最小值,则可以是NULL。
minLoc:为最小值的位置,如果没有最大值,则可以是NULL。
maxLoc:为最大值的位置,如果没有最大值,则可以是NULL。
mask:为用来选取掩模的子集,可选项

示例:

复制代码
rv = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(rv)

卡尺找圆 精细定位

卡尺的原理:

是找N个小矩形ROI里面的灰度值突变的地方。即:遍历每个小矩形ROI,分别找到1个点,这个点是灰度突变的峰值。然后把这N个点拟合成直线或者圆。

相关推荐
勇敢牛牛_21 分钟前
Rust真的适合写业务后端吗?
开发语言·后端·rust
要加油GW27 分钟前
python使用vscode 需要配置全局的环境变量。
开发语言·vscode·python
B站计算机毕业设计之家32 分钟前
python图像识别系统 AI多功能图像识别检测系统(11种识别功能)银行卡、植物、动物、通用票据、营业执照、身份证、车牌号、驾驶证、行驶证、车型、Logo✅
大数据·开发语言·人工智能·python·图像识别·1024程序员节·识别
快乐的钢镚子1 小时前
思腾合力云服务器远程连接
运维·服务器·python
苏打水com1 小时前
爬虫进阶实战:突破动态反爬,高效采集CSDN博客详情页数据
爬虫·python
ceclar1231 小时前
C++日期与时间
开发语言·c++
懒羊羊不懒@1 小时前
JavaSe—泛型
java·开发语言·人工智能·windows·设计模式·1024程序员节
Zhangzy@1 小时前
Rust Workspace 构建多项目体系
开发语言·前端·rust
麦麦鸡腿堡1 小时前
Java的三代日期类(Date,Calendar,LocalDateTime)
java·开发语言
夫唯不争,故无尤也1 小时前
三大AI部署框架对比:本地权重与多模型协作实战
人工智能·python·深度学习