PyTorch Lightning快速学习教程一:快速训练一个基础模型

粉丝量突破1200了!找到了喜欢的岗位,毕业上班刚好也有20天,为了督促自己终身学习的态度,继续开始坚持写写博客,沉淀并总结知识!

介绍:PyTorch Lightning是针对科研人员、机器学习开发者专门设计的,能够快速复用代码的一个工具,避免了因为每次都编写相似的代码而带来的时间成本。其可以理解为,lightning设计了一个,能够快速搭建训练验证测试模型的整套代码模板,我们只需要编写设计需要的模型、超参数、优化器等,直接套进去即可。lightning的优势在于:灵活性高、可读性强、支持多卡训练、内置测试、内置日志等。

前置掌握知识:Python和PyTorch的使用

链接:https://lightning.ai/

快速安装:pip install lightning

1.添加依赖包

需要添加相应的依赖,包括os,torch工具包,torch数据载入等依赖

python 复制代码
import os		
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as pl

2.定义模型

PyTorch定义模型案例如下,定义好了方便后续的调用

python 复制代码
class Encoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))
    def forward(self, x):
        return self.l1(x)	# 全连接 激活 全连接

class Decoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))
    def forward(self, x):
        return self.l1(x)	# 全连接 激活 全连接

3.定义网络架构

定义网络模型,自定义模型名字,并继承lightning.pytorch.LightningModule类,如下代码

  • training_step定义了与nn.Module之间交互

  • configure_optimizers为模型定义优化器

python 复制代码
class LitAutoEncoder(pl.LightningModule):
    def __init__(self, encoder, decoder):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop.
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

4.定义训练集

定义DataLoader,这一点跟PyTorch调模型的流程一样,如下调用了MNIST公开数据集

python 复制代码
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)

5.训练数据

使用Lightning来处理所有的训练,如下代码。

python 复制代码
# model 模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())

# train model 训练
trainer = pl.Trainer()
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

一般的训练过程,需要设计如下代码,进行遍历和循环训练,Lightning会消除这些繁琐的过程,使用Lightning,可以将所有这些技术混合在一起,而无需每次都重写一个新的循环。

python 复制代码
autoencoder = LitAutoEncoder(Encoder(), Decoder())
optimizer = autoencoder.configure_optimizers()

for batch_idx, batch in enumerate(train_loader):
    loss = autoencoder.training_step(batch, batch_idx)

    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

完整代码

python 复制代码
# coding:utf-8
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L

# --------------------------------
# Step 1: 定义一个 LightningModule
# --------------------------------
# A LightningModule (nn.Module subclass) defines a full *system*
# (例如: an LLM, diffusion model, autoencoder, or simple image classifier).


class LitAutoEncoder(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # forward 定义了一次 预测/推理 行为
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step 定义了一次训练的迭代, 和forward相互独立
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

# -------------------
# Step 2: 定义数据集
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
train, val = data.random_split(dataset, [55000, 5000])

# -------------------
# Step 3: 开始训练
# -------------------
autoencoder = LitAutoEncoder()
trainer = L.Trainer(accelerator="gpu")	
trainer.fit(autoencoder, data.DataLoader(train,batch_size=128), data.DataLoader(val))
相关推荐
特立独行的猫a1 小时前
HarmonyOS 【诗韵悠然】AI古诗词赏析APP开发实战从零到一系列(一、开篇,项目介绍)
人工智能·华为·harmonyos·古诗词
yu4106212 小时前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
是孑然呀3 小时前
【小记】word批量生成准考证
笔记·学习·excel
feng995204 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681655 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..5 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能5 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
ll7788116 小时前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
视觉语言导航6 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux6 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能