数据库缓存服务——NoSQL之Redis配置与优化

目录

一、缓存概念

[1.1 系统缓存](#1.1 系统缓存)

[1.2 缓存保存位置及分层结构](#1.2 缓存保存位置及分层结构)

[1.2.1 DNS缓存](#1.2.1 DNS缓存)

[1.2.2 应用层缓存](#1.2.2 应用层缓存)

[1.2.3 数据层缓存](#1.2.3 数据层缓存)

[1.2.4 硬件缓存](#1.2.4 硬件缓存)

二、关系型数据库与非关系型数据库

[2.1 关系型数据库](#2.1 关系型数据库)

[2.2 非关系型数据库](#2.2 非关系型数据库)

[2.3 关系型数据库和非关系型数据库区别:](#2.3 关系型数据库和非关系型数据库区别:)

[2.4 非关系型数据库产生背景](#2.4 非关系型数据库产生背景)

[2.5 总结](#2.5 总结)

三、Redis简介

[3.1 Redis具有以下几个优点:](#3.1 Redis具有以下几个优点:)

[3.2 Redis缺点](#3.2 Redis缺点)

[3.3 Redis的适用场景](#3.3 Redis的适用场景)

[3.4 Redis为什么这么快?](#3.4 Redis为什么这么快?)

[3.5 Redis与memcached比较](#3.5 Redis与memcached比较)


一、缓存概念

缓存是为了调节速度不一致的两个或多个不同的物质的速度,在中间对速度较慢的一方起到加速作用,比如CPU的一级、二级缓存是保存了CPU最近经常访问的数据,内存是保存CPU经常访问硬盘的数据,而且硬盘也有大小不一的缓存,甚至是物理服务器的raid 卡有也缓存,都是为了起到加速CPU 访问硬盘数据的目的,因为CPU的速度太快了,CPU需要的数据由于硬盘往往不能在短时间内满足CPU的需求,因此CPU缓存、内存、Raid 卡缓存以及硬盘缓存就在一定程度上满足了CPU的数据需求,即CPU 从缓存读取数据可以大幅提高CPU的工作效率。

1.1 系统缓存

buffer与cache:

  • buffer: 缓冲也叫写缓冲,一般用于写操作,可以将数据先写入内存再写入磁盘,buffer 一般用于写缓冲,用于解决不同介质的速度不一致的缓冲,先将数据临时写入到里自己最近的地方,以提高写入速度,CPU会把数据先写到内存的磁盘缓冲区,然后就认为数据已经写入完成看,然后由内核在后续的时间在写入磁盘,所以服务器突然断电会丢失内存中的部分数据。
  • cache: 缓存也叫读缓存,一般用于读操作,CPU读文件从内存读,如果内存没有就先从硬盘读到内存再读到CPU,将需要频繁读取的数据放在里自己最近的缓存区域,下次读取的时候即可快速读取。

1.2 缓存保存位置及分层结构

互联网应用领域,提到缓存为王。

  • 用户层:浏览器DNS缓存,应用程序DNS缓存,操作系统DNS缓存客户端
  • 代理层:CDN,反向代理缓存
  • Web层:Web服务器缓存
  • 应用层:页面静态化
  • 数据层:分布式缓存,数据库
  • 系统层:操作系统cache
  • 物理层:磁盘cache, Raid Cache

1.2.1 DNS缓存

浏览器的DNS缓存默认为60秒,即60秒之内在访问同一个域名就不在进行DNS解析。

1.2.2 应用层缓存

Nginx、PHP等web服务可以设置应用缓存以加速响应用户请求,另外有些解释性语言,比如:PHP/Python/Java不能直接运行,需要先编译成字节码,但字节码需要解释器解释为机器码之后才能执行,因此字节码也是一种缓存,有时候还会出现程序代码上线后字节码没有更新的现象。所以一般上线新版前,需要先将应用缓存清理,再上线新版。

另外可以利用动态页面静态化技术,加速访问,比如:将访问数据库的数据的动态页面,提前用程序生成静态页面文件html 电商网站的商品介绍,评论信息非实时数据等皆可利用此技术实现。

1.2.3 数据层缓存

分布式缓存服务:

  • Redis
  • Memcached

数据库:

  • MySQL 查询缓存
  • innodb缓存、MYISAM缓存

1.2.4 硬件缓存

  • CPU缓存(L1的数据缓存和L1的指令缓存)、二级缓存、三级缓存
  • 磁盘缓存:Disk Cache
  • 磁盘阵列缓存:Raid Cache,可使用电池防止断电丢失数据

二、关系型数据库与非关系型数据库

2.1 关系型数据库

  • 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。
  • SQL语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
  • 主流的关系型数据库包括Oracle、 MySQL、SQL Server、Microsoft Access、 DB2、PostgreSQL 等。

以上数据库在使用的时候必须先建库建表设计表结构,然后存储数据的时候按表结构去存,如果数据与表结构不匹配就会存储失败。

2.2 非关系型数据库

  • NoSQL(NoSQL=NotonlysQL),意思是"不仅仅是SQL",是非关系型数据库的总称。
  • 除了主流的关系型数据库外的数据库,都认为是非关系型。
  • 不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数(比如微信群聊里的文字、图片、视频、音乐等)。
  • 主流的NOSQL 数据库有Redis、MongBD、 Hbase(分布式非关系型数据库,大数据使用)、Memcached、ElasticSearch(简称ES,索引型数据库)、TSDB(时续型数据库) 等。

2.3 关系型数据库和非关系型数据库区别:

(1)数据存储方式不同

关系型和非关系型数据库的主要差异是数据存储的方式。

  • 关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
  • 与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。(很容易切换数据类型,一个数据集当中有多种数据类型)

(2)扩展方式不同

SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。

  • 要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来克服。虽然SQI数据库有很大打展空间,但最终肯定会达到纵向扩展的上限。(数据一般存储在本地的文件系统中。读可以通过读写分离、负载均衡来分摊性能,但读写仍然很消耗IO性能)
  • 而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。(数据分布存储在不同服务器上,可以并发地读写,加快效率)

小贴士:

  • 横向扩展:加服务器。(比较便宜)

  • 纵向扩展:提高硬件配置,比如换更高性能的CPU、加CPU核数、硬盘、磁盘IO、内存条。(除硬盘外,其他需要停机才能加)

(3)对事务性的支持不同

  • 如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
  • 虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
  • 非关系型数据库在事务的处理和稳定性方面,不如关系型数据库。但读写性能好、易于扩展,处理大数据方面占优势。

关系型数据库:特别适合高事务性要求和需要控制执行计划的任务,事务细粒度控制更好。

非关系型数据库:事务控制会稍显弱势,其价值点在于高扩展性和大数据量处理方面。

2.4 非关系型数据库产生背景

可用于应对Web2.0纯动态网站类型的三高问题。

(1)High performance ------ 对数据库高并发读写需求。

(2)Hugestorage------对海量数据高效存储与访问需求。

(3)HighScalability&&HighAvailability------对数据库高可扩展性与高可用性需求。

关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。让关系型数据库关注在关系上和对数据的一致性保障,非关系型数据库关注在存储和高效率上 。例如,在读写分离的MySQI数据库环境中,可以把经常访问的数据(即高热数据)存储在非关系型数据库中,提升访问速度

2.5 总结

关系型数据库:

  • 实例-->数据库-->表(table)-->记录行(row)、数据字段(column)

非关系型数据库:

  • 实例-->数据库-->集合(collection) -->键值对(key-value)
  • 非关系型数据库不需要手动建数据库和集合(表)。

三、Redis简介

Redis (远程字典服务器)是一个 开源的、使用C语言编写的NoSQL 数据库。

Redis 基于内存运行并支持持久化,采用key-value (键值对)的存储形式,是目前分布式架构中不可或缺的一环。

Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。

  • 若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;
  • 若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。

即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程即可。

3.1 Redis具有以下几个优点:

(1)具有极高的数据读写速度: 数据读取的速度最高可达到110000 次/s,数据写入速度最高可达到81000次/s。

(2)支持的数据结构: key-value,支持丰富的数据类型:Strings、 Lists、Hashes、 Sets 及Sorted Sets 等数据类型操作。

  • Strings 字符串型
  • Lists 列表型
  • Hashes 哈希(散列)
  • Sets 无序集合
  • Sorted Sets 有序集合(或称zsets)

(redis也可以做消息队列,可以通过Sorted Sets实现)

(3)支持数据的持久化: 可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。

(4)原子性: Redis所有操作都是原子性的。(支持事务,所有操作都作为事务)

(5)支持数据备份: 即 master-salve 模式的数据备份。(支持主从复制)

3.2 Redis缺点

  1. 缓存和数据库双写一致性问题
  2. 缓存雪崩问题
  3. 缓存击穿问题
  4. 缓存的并发竞争问题

3.3 Redis的适用场景

  • Redis作为基于内存运行的数据库,是一个高性能的缓存,一般应用在session缓存、 队列、排行榜、计数器、最近最热文章、最近最热评论、发布订阅等。
  • Redis适用于数据实时性要求高、数据存储有过期和淘汰特征的、不需要持久化或者只需要保证弱一致性、逻辑简单的场景。

3.4 Redis为什么这么快?

  • 1、Redis是一款纯内存结构,避免了磁盘 I/O 等耗时操作。(基于内存运行)
  • 2、Redis命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。(单线程模型)
  • 3、采用了 I/O 多路复用机制,大大提升了并发效率。(epoll模式)

注:

linux系统中有两种I/O类型:磁盘I/O,网络请求I/O。

在Redis6.0中新增加的多线程也只是针对处理网络请求过程采用了多线性,而数据的读写命令,仍然是单线程处理的。

3.5 Redis与memcached比较

Memcached Redis
类型 Key-value数据库 Key-value数据库
过期策略 支持 支持
数据类型 单一数据类型 五大数据类型
持久化 不支持 支持
主从复制 不支持 支持
虚拟内存 不支持 支持
相关推荐
数据馅1 分钟前
python自动生成pg数据库表对应的es索引
数据库·python·elasticsearch
峰子201219 分钟前
B站评论系统的多级存储架构
开发语言·数据库·分布式·后端·golang·tidb
浏览器爱好者2 小时前
如何使用MongoDB进行数据存储?
数据库·mongodb
yuanpan2 小时前
MongoDB中的横向扩容数据分片
数据库·mongodb
草明2 小时前
Mongodb 慢查询日志分析 - 1
数据库·python·mongodb
yuanpan2 小时前
MongoDB的事务机制
数据库·mongodb
SelectDB2 小时前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据分析
云和恩墨4 小时前
云计算、AI与国产化浪潮下DBA职业之路风云变幻,如何谋破局启新途?
数据库·人工智能·云计算·dba
Fly不安全5 小时前
Web安全:缓存欺骗攻击;基于缓存、CDN的新型Web漏洞
nginx·web安全·缓存·web·cdn·缓存欺骗攻击
明月看潮生5 小时前
青少年编程与数学 02-007 PostgreSQL数据库应用 11课题、视图的操作
数据库·青少年编程·postgresql·编程与数学