大数据处理框架-Spark DataFrame构造、join和null空值填充

1、Spark DataFrame介绍

DataFrame是Spark SQL中的一个概念,它是一个分布式的数据集合,可以看作是一张表。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。

2、构造DataFrame

scala 复制代码
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.{SparkSession}

object AppendColDFTest {
  Logger.getLogger("org").setLevel(Level.ERROR)
  Logger.getRootLogger().setLevel(Level.ERROR) // 设置日志级别
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("InDFTest")
      .master("local[*]")
      .getOrCreate()

    // 创建aDF和bDF
    val aData = Seq(
      (1, 1, 10, 20, 30),
      (1, 2, 10, 20, 30),
      (2, 1, 10, 20, 20),
      (2, 2, 10, 20, 50),
      (3, 4, 10, 20, 40),
      (3, 5, 10, 20, 30),
        (3, 6, 10, 20, 30),
      (4, 1, 10, 20, 20),
      (4, 2, 10, 20, 50)

    )
    val aDF = spark.createDataFrame(aData).toDF("x", "y", "z", "p", "q")

    val bData = Seq(
      (1, 1, 5, 15, 25),
      (2, 1, 25, 55, 105),
      (3, 4, 75, 85, 95)
    )
    val bDF = spark.createDataFrame(bData).toDF("x", "y", "m", "n", "l")

  }
}

3、两个DataFrame join

scala 复制代码
// 使用left join关联aDF和bDF
val joinedDF = aDF.join(bDF, Seq("x", "y"), "left")
joinedDF.show()
bash 复制代码
+---+---+---+---+---+----+----+----+
|  x|  y|  z|  p|  q|   m|   n|   l|
+---+---+---+---+---+----+----+----+
|  1|  1| 10| 20| 30|   5|  15|  25|
|  1|  2| 10| 20| 30|null|null|null|
|  2|  1| 10| 20| 20|  25|  55| 105|
|  2|  2| 10| 20| 50|null|null|null|
|  3|  4| 10| 20| 40|  75|  85|  95|
|  3|  5| 10| 20| 30|null|null|null|
|  3|  6| 10| 20| 30|null|null|null|
|  4|  1| 10| 20| 20|null|null|null|
|  4|  2| 10| 20| 50|null|null|null|
+---+---+---+---+---+----+----+----+

4、null空值填充

scala 复制代码
// 添加新的列,并填充空缺的值
val resultDF = joinedDF
  .withColumn("m", when(col("m").isNull, lit(0)).otherwise(col("m")))
  .withColumn("n", when(col("n").isNull, lit(0)).otherwise(col("n")))
  .withColumn("l", when(col("l").isNull, lit(0)).otherwise(col("l")))
  .select("x", "y", "m", "n", "l")
  .orderBy("x", "y")

// 显示最终结果
resultDF.show()
bash 复制代码
+---+---+---+---+---+
|  x|  y|  m|  n|  l|
+---+---+---+---+---+
|  1|  1|  5| 15| 25|
|  1|  2|  0|  0|  0|
|  2|  1| 25| 55|105|
|  2|  2|  0|  0|  0|
|  3|  4| 75| 85| 95|
|  3|  5|  0|  0|  0|
|  3|  6|  0|  0|  0|
|  4|  1|  0|  0|  0|
|  4|  2|  0|  0|  0|
+---+---+---+---+---+
相关推荐
大任视点6 小时前
新时代旅游职业教育系列教材编写研讨会成功举办
大数据
拓端研究室7 小时前
专题:2025AI时代的医疗保健业:应用与行业趋势研究报告|附130+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能
小泊客9 小时前
使用讯飞星火 Spark X1-32K 打造本地知识助手
大数据·分布式·spark·大模型应用·本地知识助手
wangqiaowq10 小时前
StarRocks 3.5.7 安装部署
大数据
PPT百科10 小时前
PPT插入的音乐怎么让它播放到某一页就停?
大数据·职场和发展·powerpoint·职场·ppt模板
码上地球10 小时前
大数据成矿预测系列(八) | 从定性到概率:逻辑回归——地质统计学派的“集大成者”
大数据·逻辑回归
拓端研究室10 小时前
专题:2025中国医疗器械出海现状与趋势创新发展研究报告|附160+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
zskj_zhyl11 小时前
科技向暖,银发无忧:十五五规划中智慧养老的温度革命
大数据·人工智能·科技·物联网·生活
muxue17812 小时前
Hadoop集群搭建(上):centos 7为例(已将将安装所需压缩包统一放在了/opt/software目录下)
大数据·hadoop·centos
阿里云大数据AI技术12 小时前
【跨国数仓迁移最佳实践11】基于 MaxCompute Resource & Quota策略优化实现资源管理性能与成本最优平衡
大数据