图像中不规则物体的长轴与短轴:OpenCV实现指南

1.首先,读取图像并将其转换为灰度图像。

2.进行图像预处理,包括使用高斯模糊和阈值化,以便更好地处理图像。

3.通过使用OpenCV的cv2.findContours()函数,找到图像中的所有轮廓。

4.遍历所有轮廓,如果轮廓点的数量大于等于5个,则将这个轮廓拟合为一个椭圆。

5.如果成功拟合出椭圆,则获取椭圆的中心坐标、长轴长度、短轴长度和旋转角度。

6.使用计算得到的椭圆信息,计算出长轴和短轴的端点坐标。

7.使用OpenCV的cv2.ellipse()函数在原始图像上绘制椭圆,并使用cv2.circle()函数在图像上绘制长轴和短轴的四个端点,并分别用红色和蓝色表示。

8.最后,显示带有椭圆和端点的图像,等待用户按下任意键后关闭显示窗口。

python 复制代码
import cv2
import numpy as np

image = cv2.imread("XXX.png", cv2.IMREAD_GRAYSCALE)
blur = cv2.GaussianBlur(image, (5, 5), 0)
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

ellipse = None
for contour in contours:
    if len(contour) >= 5:
        ellipse = cv2.fitEllipse(contour)
        break

if ellipse is not None:
    center, axes, angle = ellipse
    major_axis, minor_axis = axes
    angle_rad = np.deg2rad(angle)
    cos_angle = np.cos(angle_rad)
    sin_angle = np.sin(angle_rad)

    # 长轴端点坐标
    x1 = int(center[0] + major_axis / 2 * cos_angle)
    y1 = int(center[1] - major_axis / 2 * sin_angle)
    x2 = int(center[0] - major_axis / 2 * cos_angle)
    y2 = int(center[1] + major_axis / 2 * sin_angle)

    # 短轴端点坐标
    x3 = int(center[0] + minor_axis / 2 * sin_angle)
    y3 = int(center[1] + minor_axis / 2 * cos_angle)
    x4 = int(center[0] - minor_axis / 2 * sin_angle)
    y4 = int(center[1] - minor_axis / 2 * cos_angle)

    # 在图像上绘制椭圆及长轴和短轴的端点
    image_with_ellipse = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    cv2.ellipse(image_with_ellipse, ellipse, (0, 255, 0), 2)
    cv2.circle(image_with_ellipse, (x1, y1), 5, (0, 0, 255), -1)  # 长轴端点用红色标记
    cv2.circle(image_with_ellipse, (x2, y2), 5, (0, 0, 255), -1)  # 长轴端点用红色标记
    cv2.circle(image_with_ellipse, (x3, y3), 5, (255, 0, 0), -1)  # 短轴端点用蓝色标记
    cv2.circle(image_with_ellipse, (x4, y4), 5, (255, 0, 0), -1)  # 短轴端点用蓝色标记

    # 显示图像
    cv2.imshow("Image with Ellipse and Axes", image_with_ellipse)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
else:
    print("No ellipse found.")
相关推荐
深蓝岛11 分钟前
目标检测核心技术突破:六大前沿方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
晚霞apple28 分钟前
特征融合与目标检测的六大创新方向
论文阅读·人工智能·深度学习·神经网络·机器学习
算家计算33 分钟前
外卖巨头变身AI黑马!美团开源视频大模型,性能比肩谷歌Veo3
人工智能
算家计算34 分钟前
PaddleOCR-VL本地部署教程:0.9B参数问鼎全球第一,轻量化模型实现多模态文档解析SOTA
人工智能·开源
Theodore_102243 分钟前
神经学习(4)神经网络的向量化实现与TensorFlow训练流程
人工智能·深度学习·机器学习·计算机视觉·线性回归
wwlsm_zql1 小时前
「赤兔」Chitu 框架深度解读(十二):分布式并行初始化与管理
人工智能·1024程序员节
后端小肥肠1 小时前
效率狂飙!n8n 无人值守工作流,每天自动把领域最新热点做成小红书卡片存本地
人工智能·agent·mcp
CoderLiu1 小时前
LLM API 成本的 3 个秘密:如何让服务商为你的复杂推理买单
人工智能·llm
AI人工智能+1 小时前
智能文本抽取:通过OCR、自然语言处理等多项技术,将非结构化文档转化为可读、可分析的数据资产
人工智能·nlp·ocr·文本抽取
这张生成的图像能检测吗1 小时前
(论文速读)Anyattack: 面向视觉语言模型的大规模自监督对抗性攻击
人工智能·语言模型·clip·视觉语言模型·对抗攻击