Python基于PyTorch实现循环神经网络回归模型(LSTM回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1 . 项目背景

LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作"长'短记忆'"网络。读的时候,"长"后面要稍作停顿,不要读成"长短"记忆网络,因为那样的话,就不知道记忆到底是长还是短。本质上,它还是短记忆网络,只是用某种方法把"短记忆"尽可能延长了一些。

本项目通过基于PyTorch实现循环神经网络回归模型。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建循环神经网络回归模型

主要使用LSTM回归算法,用于目标回归。

6. 1 构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方0.9871,为模型效果良好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8. 结论与展望

综上所述,本文基于PyTorch实现循环神经网络回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 定义训练函数
def train(model, train_loader, criterion, optimizer, device):
    model.train()  # 设置训练模式

    for i, (inputs, labels) in enumerate(train_loader):  # 进行循环
        inputs, labels = inputs.to(device), labels.to(device)  # 输入数据、标签数据

        optimizer.zero_grad()  # 清空过往梯度



本次机器学习项目实战所需的资料,项目资源如下:

项目说明:
链接:https://pan.baidu.com/s/1dW3S1a6KGdUHK90W-lmA4w 
提取码:bcbp



# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关推荐
yma164 分钟前
windows10下使用沙盒多开uiautoanimation可行性验证
python·uiautoanimation
HappyAcmen10 分钟前
青训营-豆包MarsCode技术训练营试题解析四十八
开发语言·python·算法
Pingszi19 分钟前
3.阿里云flink&selectdb-py作业
python·阿里云·flink·数仓
可喜~可乐23 分钟前
循环神经网络(RNN)入门指南:从原理到实践
人工智能·rnn·深度学习·神经网络·机器学习·lstm
新手小袁_J23 分钟前
No Python at ‘C:\Users\MI\AppData\Local\Programs\Python\Python39\python.exe‘
开发语言·python·error·no python
stormjun23 分钟前
基于 Python Django 的二手电子设备交易平台(附源码,文档)
开发语言·python·django·二手电子设备·电子设备售卖·电子设备交易
程序媛小果39 分钟前
基于Django+python的Python在线自主评测系统设计与实现
android·python·django
minstbe40 分钟前
WEB开发 - Flask 入门:Jinja2 模板语法进阶 Python
后端·python·flask
Adenialzz1 小时前
Rectified Flow 原理简介与示例代码解读
人工智能·深度学习·机器学习·计算机视觉·diffusion
就一枚小白1 小时前
UE--如何用 Python 调用 C++ 及蓝图函数
c++·python·ue5