第六篇-ChatGLM2-6B-CentOS安装部署-GPU版

环境

复制代码
系统:CentOS-7
CPU: 14C28T
显卡:Tesla P40 24G
驱动: 515
CUDA: 11.7
cuDNN: 8.9.2.26

模型文件

https://huggingface.co/THUDM/chatglm2-6b

下载模型相关文件到自己目录

我的是/models/chatglm2-6b

复制代码
[root@ai-server chatglm2-6b]# pwd
/models/chatglm2-6b
[root@ai-server chatglm2-6b]# ll -h
total 12G
-rw-r--r--. 1 root root   678 Jul 29 09:30 cli.py
-rw-r--r--. 1 root root  1.2K Jul 29 09:30 config.json
-rw-r--r--. 1 root root  2.2K Jul 29 09:30 configuration_chatglm.py
-rw-r--r--. 1 root root   50K Jul 29 09:30 modeling_chatglm.py
-rw-r--r--. 1 root root  4.1K Jul 29 09:30 MODEL_LICENSE.txt
-rw-r--r--. 1 root root  1.8G Jul 29 09:33 pytorch_model-00001-of-00007.bin
-rw-r--r--. 1 root root  1.9G Jul 29 09:33 pytorch_model-00002-of-00007.bin
-rw-r--r--. 1 root root  1.8G Jul 29 09:33 pytorch_model-00003-of-00007.bin
-rw-r--r--. 1 root root  1.7G Jul 29 09:33 pytorch_model-00004-of-00007.bin
-rw-r--r--. 1 root root  1.9G Jul 29 09:33 pytorch_model-00005-of-00007.bin
-rw-r--r--. 1 root root  1.8G Jul 29 09:33 pytorch_model-00006-of-00007.bin
-rw-r--r--. 1 root root 1005M Jul 29 09:32 pytorch_model-00007-of-00007.bin
-rw-r--r--. 1 root root   20K Jul 29 09:30 pytorch_model.bin.index.json
-rw-r--r--. 1 root root   15K Jul 29 09:30 quantization.py
-rw-r--r--. 1 root root   348 Jul 29 09:30 README-env.md
-rw-r--r--. 1 root root  7.9K Jul 29 09:30 README.md
-rw-r--r--. 1 root root  9.9K Jul 29 09:30 tokenization_chatglm.py
-rw-r--r--. 1 root root   244 Jul 29 09:30 tokenizer_config.json
-rw-r--r--. 1 root root  995K Jul 29 09:30 tokenizer.model

创建环境安

复制代码
conda create --name glm2 python=3.10
conda activate glm2

下载代码工程

复制代码
git clone https://github.com/THUDM/ChatGLM2-6B
cd ChatGLM2-6B

安装依赖:

复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
python web_demo.py

修改代码

web_demo.py

复制代码
tokenizer = AutoTokenizer.from_pretrained("/models/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/models/chatglm2-6b", trust_remote_code=True).cuda()

demo.queue().launch(share=False, inbrowser=True,server_name='0.0.0.0', server_port=7860)

启动

复制代码
python web_demo.py

Running on local URL:  http://0.0.0.0:7860

To create a public link, set `share=True` in `launch()`.

说明启动成功

访问

复制代码
http://192.168.1.100:7860

你好
你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。

系列文章

第一篇-ChatGLM-webui-Windows安装部署-CPU版
第二篇-二手工作站配置
第三篇-Tesla P40+CentOS-7+CUDA 11.7 部署实践
第四篇-Miniconda3-CentOS7-安装
第五篇-ChatGLM2-6B模型下载
第六篇-ChatGLM2-6B-CentOS安装部署-GPU版

相关推荐
北辰alk1 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云1 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10431 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里1 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1782 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
正在学习前端的---小方同学2 小时前
Harbor部署教程
linux·运维
盛世宏博北京2 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
牛奔2 小时前
Docker Compose 两种安装与使用方式详解(适用于 Docker 19.03 版本)
运维·docker·云原生·容器·eureka
TGITCIC2 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬2 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能