机器学习&&深度学习——感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er

🌌上期文章:机器学习&&深度学习------softmax回归的简洁实现

📚订阅专栏:机器学习&&深度学习

希望文章对你们有所帮助

线性回归已经完结了, 接下来要开始讲解多层感知机,在这之前,先介绍感知机的相关内容,有助于更好的理解。

感知机

感知机的概念

对上图,给定输入x,权重w,和偏移b,感知机输出:
o = σ ( < w , x > + b ) σ ( x ) = { 1 ,当 x > 0 时 − 1 , o t h e r w i s e o=\sigma(<w,x>+b)\\ \sigma(x)= \begin{cases} \begin{aligned} 1,当x>0时\\ -1,otherwise \end{aligned} \end{cases} o=σ(<w,x>+b)σ(x)={1,当x>0时−1,otherwise

(上式中的otherwise也可能是输出1和0)

容易看出感知机就是一个二分类问题。

和线性回归相比,感知机就是简单的两个离散数,而线性回归中会输出多个实数。

训练感知机

这其实很好理解,if中的判断条件小于等于0的话,说明预测和实际情况是相反的,这时候就需要进行更新了。

这个更新,其实等价于使用批量大小为1的梯度下降,并使用了下面的损失函数:
l ( y , x , w ) = m a x ( 0 , − y < w , x > ) l(y,x,w)=max(0,-y<w,x>) l(y,x,w)=max(0,−y<w,x>)

感知机例子

下面是区分猫狗的图像,用感知机非常适合解决这种二分类问题。


感知机缺陷

一个最大的缺陷,他所能解决的问题,一定要是一条线可以进行切割和分别的,那么如果让感知机来解决XOR问题:

两个红点表示输入的两个数都是一样的符号,而绿点表示两个输入的数是异号的。这就导致我们无法用一条直线来分开这个问题。

连一个XOR函数都没办法解决的话,感知机的缺陷可想而知,而在之后将会进行多层感知机的讲解。

相关推荐
夜幕龙7 分钟前
宇树 G1 部署(十一)——遥操作脚本升级 teleop_hand_and_arm_update.py
人工智能·机器人·具身智能
币之互联万物8 分钟前
聚焦新质生产力 科技与金融深度融合赋能创新
人工智能·科技·金融
viperrrrrrrrrr718 分钟前
AI音色克隆
人工智能·深度学习·语音识别
阿杰学AI21 分钟前
AI核心知识35——大语言模型之Generative AI(简洁且通俗易懂版)
人工智能·ai·语言模型·chatgpt·aigc·生成式ai·generative ai
IT_陈寒22 分钟前
Redis 性能骤降50%?这5个隐藏配置陷阱你可能从未注意过
前端·人工智能·后端
阿杰学AI23 分钟前
AI核心知识36——大语言模型之AGI(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·agi
过尽漉雪千山32 分钟前
Anaconda的虚拟环境下使用清华源镜像安装Pytorch
人工智能·pytorch·python·深度学习·机器学习
jarreyer33 分钟前
AB测试相关知识
人工智能·机器学习·ab测试
碧海银沙音频科技研究院33 分钟前
CLIP(对比语言-图像预训练)在长尾图像分类应用
python·深度学习·分类
七宝大爷38 分钟前
Transformer推理优化:KV缓存机制详解
深度学习·缓存·transformer