机器学习&&深度学习——感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er

🌌上期文章:机器学习&&深度学习------softmax回归的简洁实现

📚订阅专栏:机器学习&&深度学习

希望文章对你们有所帮助

线性回归已经完结了, 接下来要开始讲解多层感知机,在这之前,先介绍感知机的相关内容,有助于更好的理解。

感知机

感知机的概念

对上图,给定输入x,权重w,和偏移b,感知机输出:
o = σ ( < w , x > + b ) σ ( x ) = { 1 ,当 x > 0 时 − 1 , o t h e r w i s e o=\sigma(<w,x>+b)\\ \sigma(x)= \begin{cases} \begin{aligned} 1,当x>0时\\ -1,otherwise \end{aligned} \end{cases} o=σ(<w,x>+b)σ(x)={1,当x>0时−1,otherwise

(上式中的otherwise也可能是输出1和0)

容易看出感知机就是一个二分类问题。

和线性回归相比,感知机就是简单的两个离散数,而线性回归中会输出多个实数。

训练感知机

这其实很好理解,if中的判断条件小于等于0的话,说明预测和实际情况是相反的,这时候就需要进行更新了。

这个更新,其实等价于使用批量大小为1的梯度下降,并使用了下面的损失函数:
l ( y , x , w ) = m a x ( 0 , − y < w , x > ) l(y,x,w)=max(0,-y<w,x>) l(y,x,w)=max(0,−y<w,x>)

感知机例子

下面是区分猫狗的图像,用感知机非常适合解决这种二分类问题。


感知机缺陷

一个最大的缺陷,他所能解决的问题,一定要是一条线可以进行切割和分别的,那么如果让感知机来解决XOR问题:

两个红点表示输入的两个数都是一样的符号,而绿点表示两个输入的数是异号的。这就导致我们无法用一条直线来分开这个问题。

连一个XOR函数都没办法解决的话,感知机的缺陷可想而知,而在之后将会进行多层感知机的讲解。

相关推荐
双翌视觉11 分钟前
机械手的眼睛,视觉系统如何让机器人学会精准抓取
人工智能·机器人·自动化
IvanCodes23 分钟前
OpenAI 最新开源模型 gpt-oss (Windows + Ollama/ubuntu)本地部署详细教程
人工智能·语言模型·chatgpt·开源
2301_7690067823 分钟前
祝贺!1464种期刊被收录,CSCD 核心期刊目录更新!(附下载)
大数据·数据库·人工智能·搜索引擎·期刊
天天代码码天天1 小时前
C# OnnxRuntime Yolov8 纸箱检测
人工智能
猫头虎-人工智能1 小时前
ChatGPT模型选择器详解:全面了解GPT-4o、GPT-4.5、o3等模型的切换与使用策略(2025最新版)
人工智能·chatgpt·开源·aigc·ai编程·ai写作·ai-native
小苏兮1 小时前
飞算JavaAI深度解析:专为Java生态而生的智能引擎
java·开发语言·人工智能·java开发·飞算javaai炫技赛
qdprobot1 小时前
齐护机器人小智AI_MCP图形化编程控制Arduino_ESP32
人工智能·机器人
Deepoch1 小时前
智能巡检机器人的进化:当传统巡检遇上Deepoc具身智能外拓开发板
人工智能·机器人
碳酸的唐1 小时前
MobileNetV3: 高效移动端深度学习的前沿实现
人工智能·深度学习
中杯可乐多加冰1 小时前
【探展WAIC】从“眼见为虚”到“AI识真”:如何用大模型筑造多模态鉴伪盾牌
人工智能