机器学习&&深度学习——感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er

🌌上期文章:机器学习&&深度学习------softmax回归的简洁实现

📚订阅专栏:机器学习&&深度学习

希望文章对你们有所帮助

线性回归已经完结了, 接下来要开始讲解多层感知机,在这之前,先介绍感知机的相关内容,有助于更好的理解。

感知机

感知机的概念

对上图,给定输入x,权重w,和偏移b,感知机输出:
o = σ ( < w , x > + b ) σ ( x ) = { 1 ,当 x > 0 时 − 1 , o t h e r w i s e o=\sigma(<w,x>+b)\\ \sigma(x)= \begin{cases} \begin{aligned} 1,当x>0时\\ -1,otherwise \end{aligned} \end{cases} o=σ(<w,x>+b)σ(x)={1,当x>0时−1,otherwise

(上式中的otherwise也可能是输出1和0)

容易看出感知机就是一个二分类问题。

和线性回归相比,感知机就是简单的两个离散数,而线性回归中会输出多个实数。

训练感知机

这其实很好理解,if中的判断条件小于等于0的话,说明预测和实际情况是相反的,这时候就需要进行更新了。

这个更新,其实等价于使用批量大小为1的梯度下降,并使用了下面的损失函数:
l ( y , x , w ) = m a x ( 0 , − y < w , x > ) l(y,x,w)=max(0,-y<w,x>) l(y,x,w)=max(0,−y<w,x>)

感知机例子

下面是区分猫狗的图像,用感知机非常适合解决这种二分类问题。


感知机缺陷

一个最大的缺陷,他所能解决的问题,一定要是一条线可以进行切割和分别的,那么如果让感知机来解决XOR问题:

两个红点表示输入的两个数都是一样的符号,而绿点表示两个输入的数是异号的。这就导致我们无法用一条直线来分开这个问题。

连一个XOR函数都没办法解决的话,感知机的缺陷可想而知,而在之后将会进行多层感知机的讲解。

相关推荐
shao9185163 分钟前
Gradio全解10——Streaming:流式传输的音频应用(7)——ElevenLabs:高级智能语音技术
人工智能·gradio·tts·streaming·elevenlabs·stt·eleven music
Monkey的自我迭代6 分钟前
基于OpenCV的银行卡号识别系统:从原理到实现
人工智能·opencv·计算机视觉
会写代码的饭桶27 分钟前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
算家计算33 分钟前
ComfyUI-MultiTalk本地部署教程:创新L-RoPE机制破解多音频流绑定难题,定义多人对话视频生成新SOTA!
人工智能·开源
Stestack34 分钟前
人工智能常见分类
人工智能·分类·数据挖掘
量子位36 分钟前
18岁女孩做养老机器人,上线2天卖爆了
人工智能·llm
小林学习编程38 分钟前
2025年最新AI大模型原理和应用面试题
人工智能·ai·面试
数据分析能量站41 分钟前
大模型为什么会有幻觉?-Why Language Models Hallucinate
人工智能
小白狮ww1 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习
沧海一粟青草喂马1 小时前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵