WebAgent-基于大型语言模型的代理程序

大型语言模型(LLM)可以解决多种自然语言任务,例如算术、常识、逻辑推理、问答、文本生成、交互式决策任务。最近,LLM在自主网络导航方面也取得了巨大成功,代理程序助HTML理解和多步推理的能力,通过控制计算机或浏览互联网进行一系列计算机操作,以满足给定的自然语言指令。

然而,现实世界的网站上的网络导航仍然存在以下问题:

(1)缺乏预定义的操作空间。

(2)HTML观察比模拟器更长。

(3)LLM缺乏HTML领域知识。

考虑到现实世界网站的开放性和指令的复杂性,提前定义适当的操作空间是具有挑战性的。此外,尽管有几项研究认为通过指令微调或根据人类反馈进行强化学习可以改善对HTML的理解和网络导航的准确性,但最近的LLM并不总是具有处理HTML文档的最优设计。大多数LLM的上下文长度与现实网站上HTML的平均标记相比更短,并且没有采用特定的HTML领域知识。

针对上述问题,研究人员引入了WebAgent,这是一个由LLM驱动的代理程序,可以通过组合规范化的网络操作在现实网站上根据用户指令完成导航任务。WebAgent通过将指令分解为规范化的子指令来进行规划,将长HTML文档转化为与任务相关的片段,并通过生成的Python程序对网站进行操作。研究人员将两个LLM组合成WebAgent:Flan-U-PaLM用于基于代码的生成,以及新引入的HTML-T5(一种新型预训练LLM),用于规划和摘要本地长HTML文档。

通过实验证明,该方法可以提高在现实网站上的成功率50%以上,并且HTML-T5是目前解决基于HTML任务的最佳模型;在MiniWoB网络导航基准测试中,其成功率比之前最先进的方法高出14.9%,并且在离线任务规划评估上也具有更好的准确性。

相关推荐
广州赛远几秒前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能
Eloudy5 分钟前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc
xsc-xyc14 分钟前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
川西胖墩墩17 分钟前
垂直模型价值:专业领域超越通用模型的竞争
大数据·人工智能
小润nature20 分钟前
# Moltbot/OpenClaw 架构解读与二次开发完全指南
人工智能
AEIC学术交流中心22 分钟前
【快速EI检索 | SPIE出版】2026年机器学习与大模型国际学术会议(ICMLM 2026)
人工智能·机器学习
咕噜签名-铁蛋22 分钟前
无偿安利一款企业签名分发工具
人工智能
偷吃的耗子38 分钟前
【CNN算法理解】:卷积神经网络 (CNN) 数值计算与传播机制
人工智能·算法·cnn
AI周红伟41 分钟前
周红伟: DeepSeek大模型微调和部署实战:大模型全解析、部署及大模型训练微调代码实战
人工智能·深度学习
HAREWORK_FFF1 小时前
近几年,非技术岗转向AI岗位的现实可能性
人工智能