TensorFlow项目练手(三)——基于GRU股票走势预测任务

项目介绍

项目基于GRU算法通过20天的股票序列来预测第21天的数据,有些项目也可以用LSTM算法,两者主要差别如下:

  • LSTM算法:目前使用最多的时间序列算法,是一种特殊的RNN(循环神经网络),能够学习长期的依赖关系。主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
  • GRU算法:是一种特殊的RNN。和LSTM一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。相比LSTM,使用GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用GRU。

一、准备数据

1、获取数据

  1. 通过命令行安装yfinance
  2. 通过api获取股票数据
  3. 保存到csv中方便使用
java 复制代码
import pandas_datareader.data as web
import datetime
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.rcParams['font.sans-serif']='SimHei' #图表显示中文

import yfinance as yf
yf.pdr_override() #需要调用这个函数

# 1、获取股票数据
#上海的股票代码+.SS;深圳的股票代码+.SZ :
stock = web.get_data_yahoo("601318.SS", start="2022-01-01", end="2023-07-17")
# 保存到csv中
pd.DataFrame(data=stock).to_csv('./stock.csv')

# 2、获取csv中的数据
features = pd.read_csv('stock.csv')
features = features.drop('Adj Close',axis=1)
features.head()

2、数据可视化

通过绘图的方式查看当前的数据情况

java 复制代码
# 3、绘图看看收盘价数据情况
close=features["Close"]
# 计算20天和100天移动平均线:
short_rolling_close = close.rolling(window=20).mean()
long_rolling_close = close.rolling(window=100).mean()
# 绘制
fig, ax = plt.subplots(figsize=(16,9))   #画面大小,可以修改
ax.plot(close.index, close, label='中国平安')   #以收盘价为索引值绘图
ax.plot(short_rolling_close.index, short_rolling_close, label='20天均线')
ax.plot(long_rolling_close.index, long_rolling_close, label='100天均线')
#x轴、y轴及图例:
ax.set_xlabel('日期')
ax.set_ylabel('收盘价 (人民币)')
ax.legend()      #图例
plt.show()      #绘图

3、数据预处理

取出当前的收盘价,删除无用的日期元素

java 复制代码
# 4、取出label值
labels = features['Close']
time = features['Date']
features = features.drop('Date',axis=1)
features.head()

进行数据的归一化

java 复制代码
# 5、数据预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features

4、构建数据序列

由于RNN的算法要求我们要有一定的序列,来预测出下一个值,所以我们按照20天的数据作为一个序列

java 复制代码
# 6、定义序列,[下标1-20天预测第21天的收盘价]
from collections import deque

x = []
y = []

seq_len = 20
deq = deque(maxlen=seq_len)
for i in input_features:
    deq.append(list(i))
    if len(deq) == seq_len:
        x.append(list(deq))

x = x[:-1] # 取少一个序列,因为最后个序列没有答案
y = features['Close'].values[seq_len: ] #从第二十一天开始(下标为20)
time = time.values[seq_len: ] #从第二十一天开始(下标为20)

x, y, time = np.array(x), np.array(y), np.array(time)
print(x.shape)
print(y.shape)
print(time.shape)

二、构建模型

1、搭建GRU模型

java 复制代码
import tensorflow as tf
from tensorflow.keras import initializers
from tensorflow.keras import regularizers
from tensorflow.keras import layers

from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dropout
from keras.layers.core import Dense
from keras.optimizers import Adam

# 7、搭建模型
model = tf.keras.Sequential()
model.add(layers.GRU(8,input_shape=(20,5), activation='relu', return_sequences=True,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.GRU(16, activation='relu', return_sequences=True,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.GRU(32, activation='relu', return_sequences=False,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.Dense(16,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.Dense(1))
model.summary()

2、优化器和损失函数

java 复制代码
# 优化器和损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss=tf.keras.losses.MeanAbsoluteError(), # 标签和预测之间绝对差异的平均
              metrics = tf.keras.losses.MeanSquaredLogarithmicError()) # 计算标签和预测

3、开始训练

25%的比例作为验证集,75%的比例作为训练集

java 复制代码
# 开始训练
model.fit(x,y,validation_split=0.25,epochs=200,batch_size=128)

4、模型预测

java 复制代码
# 预测
y_pred = model.predict(x)
fig = plt.figure(figsize=(10,5))
axes = fig.add_subplot(111)
axes.plot(time,y,'b-',label='actual')
# 预测值,红色散点
axes.plot(time,y_pred,'r--',label='predict')
axes.set_xticks(time[::50])
axes.set_xticklabels(time[::50],rotation=45)
 
plt.legend()
plt.show()

5、回归指标评估

java 复制代码
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
from math import sqrt

#回归评价指标
# calculate MSE 均方误差
mse=mean_squared_error(y,y_pred)
# calculate RMSE 均方根误差
rmse = sqrt(mean_squared_error(y, y_pred))
#calculate MAE 平均绝对误差
mae=mean_absolute_error(y,y_pred)
print('均方误差: %.6f' % mse)
print('均方根误差: %.6f' % rmse)
print('平均绝对误差: %.6f' % mae)

源代码

相关推荐
池央16 分钟前
深度学习模型:卷积神经网络(CNN)
人工智能·深度学习·cnn
deephub19 分钟前
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
人工智能·python·机器学习·scikit-learn
知来者逆21 分钟前
首次公开用系统审查与评估大语言模型安全性的数据集
人工智能·机器学习·语言模型·自然语言处理·llm·大语言模型
HyperAI超神经1 小时前
NeurIPS 2024 有效投稿达 15,671 篇,数据集版块内容丰富
人工智能·开源·自动驾驶·数据集·多模态·化学光谱·neurips 2024
uhakadotcom2 小时前
AI搜索引擎的尽头是电商?从perplexity开始卖货说起...
前端·人工智能·后端
KeKe_L2 小时前
深度学习—参数初始化及激活函数Day35
人工智能·深度学习
virtaitech2 小时前
探索 GAN 的演变之路
人工智能·神经网络·生成对抗网络
黑色叉腰丶大魔王2 小时前
《掩码语言模型(Masked Language Model, MLM)》
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客2 小时前
从 App Search 到 Elasticsearch — 挖掘搜索的未来
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库开发
Jurio.3 小时前
【IEEE独立出版 | 厦门大学主办】第四届人工智能、机器人和通信国际会议(ICAIRC 2024,12月27-29日)
人工智能·深度学习·神经网络·机器学习·自然语言处理·数据挖掘·机器人