Android Rxjava :最简单&全面背压讲解 (Flowable)

1.前言

Rxjava背压被观察者发送事件的速度大于观察者接收事件的速度时,观察者内会创建一个无限制大少的缓冲池存储未接收的事件,因此当存储的事件越来越多时就会导致OOM的出现。(注:当subscribeOn与observeOn不为同一个线程时,被观察者与观察者内存在不同时长耗时任务,就会使发送与接收速度存在差异。)

背压例子

javascript 复制代码
public void backpressureSample(){
        Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> e) throws Exception {
                int i = 0;
                while(true){
                    Thread.sleep(500);
                    i++;
                    e.onNext(i);
                    Log.i(TAG,"每500ms发送一次数据:"+i);
                }
            }
        }).subscribeOn(Schedulers.newThread())//使被观察者存在独立的线程执行
          .observeOn(Schedulers.newThread())//使观察者存在独立的线程执行
          .subscribe(new Consumer<Integer>() {
              @Override
              public void accept(Integer integer) throws Exception {
                  Thread.sleep(5000);
                  Log.e(TAG,"每5000m接收一次数据:"+integer);
              }
          });
    }

例子执行效果

通过上述例子可以大概了解背压 是如何产生,因此Rxjava2.0版本提供了 Flowable 解决背压问题。 本文章就是使用与分析 Flowable 是如何解决背压问题。 文章中实例 linhaojian的Github

2.目录

3.简介


4.使用与原理详解

4.1 Flowable 与 Observable 的区别

上图可以很清楚看出二者的区别,其实Flowable 出来以上的区别之外,它其他所有使用与Observable完全一样。

Flowable 的create例子

javascript 复制代码
 public void flowable(){
        Flowable.create(new FlowableOnSubscribe<Integer>() {
            @Override
            public void subscribe(FlowableEmitter<Integer> e) throws Exception {
                for(int j = 0;j<=150;j++){
                    e.onNext(j);
                    Log.i(TAG," 发送数据:"+j);
                    try{
                        Thread.sleep(50);
                    }catch (Exception ex){
                    }
                }
            }
        },BackpressureStrategy.ERROR)
        .subscribeOn(Schedulers.newThread())
        .observeOn(Schedulers.newThread())
        .subscribe(new Subscriber<Integer>() {
            @Override
            public void onSubscribe(Subscription s) {
                s.request(Long.MAX_VALUE); //观察者设置接收事件的数量,如果不设置接收不到事件
            }
            @Override
            public void onNext(Integer integer) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.e(TAG,"onNext : "+(integer));
            }
            @Override
            public void onError(Throwable t) {
                Log.e(TAG,"onError : "+t.toString());
            }
            @Override
            public void onComplete() {
                Log.e(TAG,"onComplete");
            }
        });
    }

4.2 BackpressureStrategy媒体类

从Flowable源码查看,缓存池默认大少为:128

javascript 复制代码
public abstract class Flowable<T> implements Publisher<T> {
    /** The default buffer size. */
    static final int BUFFER_SIZE;
    static {
        BUFFER_SIZE = Math.max(1, Integer.getInteger("rx2.buffer-size", 128));
    }
    .....
}

通过上面的例子,我们可以看到create方法中的包含了一个BackpressureStrategy媒体类,其包含5种类型:

4.2.1. ERROR

把上面例子改为ERROR类型,执行结果如下:

总结 :当被观察者发送事件大于128时,观察者抛出异常并终止接收事件,但不会影响被观察者继续发送事件。

4.2.2. BUFFER

把上面例子改为BUFFER类型,执行结果如下:

总结 :与Observable一样存在背压问题,但是接收性能比Observable低,因为BUFFER类型通过BufferAsyncEmitter添加了额外的逻辑处理,再发送至观察者。

4.2.3. DROP

把上面例子改为DROP类型,执行结果如下:

总结 :每当观察者接收128事件之后,就会丢弃部分事件

4.2.4. LATEST

把上面例子改为LATEST类型,执行结果如下:

总结 :LATEST与DROP使用效果一样,但LATEST会保证能接收最后一个事件,而DROP则不会保证。

4.2.5. MISSING

把上面例子改为MISSING类型,执行结果如下:

总结 :MISSING就是没有采取 背压策略的类型,效果跟Obserable一样。

在设置MISSING类型时,可以配合onBackPressure相关操作符使用,也可以到达上述其他类型的处理效果。

4.3 onBackPressure相关操作符

使用例子:

javascript 复制代码
 Flowable.interval(50,TimeUnit.MILLISECONDS)
        .onBackpressureDrop()//效果与Drop类型一样
        .subscribeOn(Schedulers.newThread())        .observeOn(Schedulers.newThread())
        .subscribe(new Consumer<Long>() {
            @Override
            public void accept(Long aLong) throws Exception {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.e(TAG,"onNext : "+(aLong));
            }
        });

onBackpressureBuffer :与BUFFER类型一样效果。 onBackpressureDrop :与DROP类型一样效果。 onBackpressureLaster :与LASTER类型一样效果。

4.4 request()

4.4.1 request(int count):设置接收事件的数量.

例子:

javascript 复制代码
Flowable.create(new FlowableOnSubscribe<Integer>() {
            @Override
            public void subscribe(FlowableEmitter<Integer> e) throws Exception {
                for(int j = 0;j<50;j++){
                    e.onNext(j);
                    Log.i(TAG," 发送数据:"+j);
                    try{
                        Thread.sleep(50);
                    }catch (Exception ex){
                    }
                }
            }
        },BackpressureStrategy.BUFFER)
        .subscribeOn(Schedulers.newThread())
        .observeOn(Schedulers.newThread())
        .subscribe(new Subscriber<Integer>() {
            @Override
            public void onSubscribe(Subscription s) {
                s.request(10); //观察者设置接收事件的数量,如果不设置接收不到事件
            }
            @Override
            public void onNext(Integer integer) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.e(TAG,"onNext : "+(integer));
            }
            @Override
            public void onError(Throwable t) {
                Log.e(TAG,"onError : "+t.toString());
            }
            @Override
            public void onComplete() {
                Log.e(TAG,"onComplete");
            }
        });

4.4.2 request扩展使用

request还可进行扩展使用,当遇到在接收事件时想追加接收数量(如:通信数据通过几次接收,验证准确性的应用场景),可以通过以下方式进行扩展:

javascript 复制代码
Flowable.create(new FlowableOnSubscribe<Integer>() {
            @Override
            public void subscribe(FlowableEmitter<Integer> e) throws Exception {
                for(int j = 0;j<50;j++){
                    e.onNext(j);
                    Log.i(TAG," 发送数据:"+j);
                    try{
                        Thread.sleep(50);
                    }catch (Exception ex){
                    }
                }
            }
        },BackpressureStrategy.BUFFER)
        .subscribeOn(Schedulers.newThread())
        .observeOn(Schedulers.newThread())        .subscribe(new Subscriber<Integer>() {
            private Subscription subscription;
            @Override
            public void onSubscribe(Subscription s) {
                subscription = s;
                s.request(10); //观察者设置接收事件的数量,如果不设置接收不到事件
            }
            @Override
            public void onNext(Integer integer) {
                if(integer==5){
                    subscription.request(3);
                }
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.e(TAG,"onNext : "+(integer));
            }
            @Override
            public void onError(Throwable t) {
                Log.e(TAG,"onError : "+t.toString());
            }
            @Override
            public void onComplete() {
                Log.e(TAG,"onComplete");
            }
        });

总结:可以动态设置观察者接收事件的数量,但不影响被观察者继续发送事件。

4.5 requested

requestedrequest不是同一的函数,但它们都是属于FlowableEmitter类里的方法,那么requested()是有什么作用呢,看看以下例子:

javascript 复制代码
Flowable.create(new FlowableOnSubscribe<Integer>() {
            @Override
            public void subscribe(FlowableEmitter<Integer> e) throws Exception {
                for(int j = 0;j<15;j++){
                    e.onNext(j);
                    Log.i(TAG,e.requested()+" 发送数据:"+j);
                    try{
                        Thread.sleep(50);
                    }catch (Exception ex){
                    }
                }
            }
        },BackpressureStrategy.BUFFER)//
        .subscribeOn(Schedulers.newThread())//
        .observeOn(Schedulers.newThread())
        .subscribe(new Subscriber<Integer>() {
            private Subscription subscription;
            @Override
            public void onSubscribe(Subscription s) {
                subscription = s;
                s.request(10); //观察者设置接收事件的数量,如果不设置接收不到事件
            }
            @Override
            public void onNext(Integer integer) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.e(TAG,"onNext : "+(integer));
            }
            @Override
            public void onError(Throwable t) {
                Log.e(TAG,"onError : "+t.toString());
            }
            @Override
            public void onComplete() {
                Log.e(TAG,"onComplete");
            }
        });

从图中我们可以发现,requested打印的结果就是 剩余可接收的数量 ,它的作用就是可以检测剩余可接收的事件数量。

5.总结

到此,Flowable讲解完毕。

相关推荐
陈随易6 小时前
改变世界的编程语言MoonBit:配置系统介绍(下)
前端·后端·程序员
mapbar_front8 小时前
从技术到基层管理的跃升
前端·程序员
Qinana8 小时前
🌟ES6 字符串模板与数组 map 的优雅实践
前端·javascript·程序员
tinker10 小时前
[Note] ROS2 自主探索建图
程序员
AI大模型11 小时前
【LM Studio篇】不懂编程也能学会!几分钟教你在本地部署大模型
程序员·llm·agent
Qinana12 小时前
🚀 用低代码构建AI职业规划应用
前端·程序员·产品
mapbar_front1 天前
从大厂到中小公司,活下去的五个生存法则
程序员
大模型教程1 天前
“锤子”RAG已过时!让AI自带“工具选择大脑”的MCP智能体来了
程序员·llm·agent
大模型教程1 天前
告别“人工客服”!用Dify+知识库,打造你的24小时智能问答专家
程序员·llm·agent
王道长AWS_服务器1 天前
AWS + Discuz!:社区站架构的现代化玩法
后端·程序员·aws