Segment anything(图片分割大模型)

目录

[1.Segment anything](#1.Segment anything)

2.补充图像分割和目标检测的区别


1.Segment anything

定义:图像分割通用大模型

延深:可以预计视觉检测大模型,也快了。

进一步理解:传统图像分割对于下图处理时,识别房子的是识别房子的模型,识别草的是识别草的模型,识别人的是识别人的模型,而Segment anything可一次识别所有物体。可以这样说以前我们的模型是训练得到几个,几十个,几千个标签,而Segment anything可以得到所有标签,

再进一步理解:chagpt在实现文本任务时我们发现,他同样是聚焦所有点,只需要几个提示词去引导它,对应下图,比方说,找到图中病毒或者找到图中蓝色区域。在 Segment anything同样是这个道理,我们对图中想要识别的对象,点三个点(提示词),模型便知道你想识别这个对象。也可以用一个框(提示词)对这个对象作为指导。通用大模型不用一次把所有东西都训练好,在有大模型后,有提示词,可以持续学习。

2.补充图像分割和目标检测的区别

定义:在这两个任务中,我们都希望找到图像中某些感兴趣的项目的位置,比如说图中人的位置。从输出理解两者区别:

  1. 目标检测:预测包围盒(对于下面的狗只用框框起来即可)

YOLO,Fast-RCNN,似乎还有个SSD

输入:一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值。

输出:由左上角和大小定义的边框列表。

  1. 图像分割:预测掩模(对下面的狗比方说,红色的狗,周边标注时要对每一个像素点标注,过于麻烦)

Mask RCNN,Unet,Segnet

输入:是一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值

输出:是一个矩阵(掩模图像),每个像素有一个包含指定类别的

结论:输出不同,从下图理解二者区别:简单理解目标检测在图中表现为框,图像分割是一种类别的颜色。

补充一下语义分割和实例分割:

语义分割:(图片分割)是对图像中的每一块像素都应该给出类别标签。

实例分割:(目标检测)只需要给出我们关注的物体的像素的类别标签。

结论:两者其实没有本质的区别。

参考文献

1.分割一切!刷爆CV圈子的视觉终极模型Segment Anything(SAM),唐宇迪博士两小时原理精讲、源码复现带你实操!_哔哩哔哩_bilibili

2.图像分割与目标检测与区别_图像分割和目标检测区别_必修居士的博客-CSDN博客

3.计算机视觉:图像检测和图像分割有什么区别?_图像识别与分割_喜欢打酱油的老鸟的博客-CSDN博客

相关推荐
AI大模型系统化学习28 分钟前
Excel MCP: 自动读取、提炼、分析Excel数据并生成可视化图表和分析报告
人工智能·ai·大模型·ai大模型·大模型学习·大模型入门·mcp
lboyj1 小时前
填孔即可靠:猎板PCB如何用树脂塞孔重构高速电路设计规则
人工智能·重构
Blossom.1181 小时前
从虚拟现实到混合现实:沉浸式体验的未来之路
人工智能·目标检测·机器学习·计算机视觉·语音识别·vr·mr
赵青临的辉1 小时前
简单神经网络(ANN)实现:从零开始构建第一个模型
人工智能·深度学习·神经网络
KALC1 小时前
告别“知识孤岛”:RAG赋能网络安全运营
人工智能·网络安全
2303_Alpha2 小时前
深度学习入门:深度学习(完结)
人工智能·笔记·python·深度学习·神经网络·机器学习
白白白飘2 小时前
pytorch 15.1 学习率调度基本概念与手动实现方法
人工智能·pytorch·学习
深度学习入门2 小时前
机器学习,深度学习,神经网络,深度神经网络之间有何区别?
人工智能·python·深度学习·神经网络·机器学习·机器学习入门·深度学习算法
张彦峰ZYF3 小时前
走出 Demo,走向现实:DeepSeek-VL 的多模态工程路线图
人工智能
Johny_Zhao3 小时前
Vmware workstation安装部署微软SCCM服务系统
网络·人工智能·python·sql·网络安全·信息安全·微软·云计算·shell·系统运维·sccm