Segment anything(图片分割大模型)

目录

[1.Segment anything](#1.Segment anything)

2.补充图像分割和目标检测的区别


1.Segment anything

定义:图像分割通用大模型

延深:可以预计视觉检测大模型,也快了。

进一步理解:传统图像分割对于下图处理时,识别房子的是识别房子的模型,识别草的是识别草的模型,识别人的是识别人的模型,而Segment anything可一次识别所有物体。可以这样说以前我们的模型是训练得到几个,几十个,几千个标签,而Segment anything可以得到所有标签,

再进一步理解:chagpt在实现文本任务时我们发现,他同样是聚焦所有点,只需要几个提示词去引导它,对应下图,比方说,找到图中病毒或者找到图中蓝色区域。在 Segment anything同样是这个道理,我们对图中想要识别的对象,点三个点(提示词),模型便知道你想识别这个对象。也可以用一个框(提示词)对这个对象作为指导。通用大模型不用一次把所有东西都训练好,在有大模型后,有提示词,可以持续学习。

2.补充图像分割和目标检测的区别

定义:在这两个任务中,我们都希望找到图像中某些感兴趣的项目的位置,比如说图中人的位置。从输出理解两者区别:

  1. 目标检测:预测包围盒(对于下面的狗只用框框起来即可)

YOLO,Fast-RCNN,似乎还有个SSD

输入:一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值。

输出:由左上角和大小定义的边框列表。

  1. 图像分割:预测掩模(对下面的狗比方说,红色的狗,周边标注时要对每一个像素点标注,过于麻烦)

Mask RCNN,Unet,Segnet

输入:是一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值

输出:是一个矩阵(掩模图像),每个像素有一个包含指定类别的

结论:输出不同,从下图理解二者区别:简单理解目标检测在图中表现为框,图像分割是一种类别的颜色。

补充一下语义分割和实例分割:

语义分割:(图片分割)是对图像中的每一块像素都应该给出类别标签。

实例分割:(目标检测)只需要给出我们关注的物体的像素的类别标签。

结论:两者其实没有本质的区别。

参考文献

1.分割一切!刷爆CV圈子的视觉终极模型Segment Anything(SAM),唐宇迪博士两小时原理精讲、源码复现带你实操!_哔哩哔哩_bilibili

2.图像分割与目标检测与区别_图像分割和目标检测区别_必修居士的博客-CSDN博客

3.计算机视觉:图像检测和图像分割有什么区别?_图像识别与分割_喜欢打酱油的老鸟的博客-CSDN博客

相关推荐
剪一朵云爱着23 分钟前
一文入门:机器学习
人工智能·机器学习
hi0_624 分钟前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
ChinaRainbowSea25 分钟前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
有Li37 分钟前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
桃花键神1 小时前
从传统到智能:3D 建模流程的演进与 AI 趋势 —— 以 Blender 为例
人工智能·3d·blender
星期天要睡觉1 小时前
计算机视觉(opencv)实战十七——图像直方图均衡化
人工智能·opencv·计算机视觉
大视码垛机1 小时前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造
feifeigo1231 小时前
星座SAR动目标检测(GMTI)
人工智能·算法·目标跟踪
WWZZ20251 小时前
视觉SLAM第10讲:后端2(滑动窗口与位子图优化)
c++·人工智能·后端·算法·ubuntu·机器人·自动驾驶
攻城狮7号1 小时前
HunyuanVideo-Foley模型开源,让AI视频告别“默片时代”
人工智能·hunyuanvideo·foley·混元开源模型·ai音频