Segment anything(图片分割大模型)

目录

[1.Segment anything](#1.Segment anything)

2.补充图像分割和目标检测的区别


1.Segment anything

定义:图像分割通用大模型

延深:可以预计视觉检测大模型,也快了。

进一步理解:传统图像分割对于下图处理时,识别房子的是识别房子的模型,识别草的是识别草的模型,识别人的是识别人的模型,而Segment anything可一次识别所有物体。可以这样说以前我们的模型是训练得到几个,几十个,几千个标签,而Segment anything可以得到所有标签,

再进一步理解:chagpt在实现文本任务时我们发现,他同样是聚焦所有点,只需要几个提示词去引导它,对应下图,比方说,找到图中病毒或者找到图中蓝色区域。在 Segment anything同样是这个道理,我们对图中想要识别的对象,点三个点(提示词),模型便知道你想识别这个对象。也可以用一个框(提示词)对这个对象作为指导。通用大模型不用一次把所有东西都训练好,在有大模型后,有提示词,可以持续学习。

2.补充图像分割和目标检测的区别

定义:在这两个任务中,我们都希望找到图像中某些感兴趣的项目的位置,比如说图中人的位置。从输出理解两者区别:

  1. 目标检测:预测包围盒(对于下面的狗只用框框起来即可)

YOLO,Fast-RCNN,似乎还有个SSD

输入:一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值。

输出:由左上角和大小定义的边框列表。

  1. 图像分割:预测掩模(对下面的狗比方说,红色的狗,周边标注时要对每一个像素点标注,过于麻烦)

Mask RCNN,Unet,Segnet

输入:是一个矩阵(输入图像),每个像素有 3 个值(红、绿、蓝),如果是黑色和白色,则每个像素有 1 个值

输出:是一个矩阵(掩模图像),每个像素有一个包含指定类别的

结论:输出不同,从下图理解二者区别:简单理解目标检测在图中表现为框,图像分割是一种类别的颜色。

补充一下语义分割和实例分割:

语义分割:(图片分割)是对图像中的每一块像素都应该给出类别标签。

实例分割:(目标检测)只需要给出我们关注的物体的像素的类别标签。

结论:两者其实没有本质的区别。

参考文献

1.分割一切!刷爆CV圈子的视觉终极模型Segment Anything(SAM),唐宇迪博士两小时原理精讲、源码复现带你实操!_哔哩哔哩_bilibili

2.图像分割与目标检测与区别_图像分割和目标检测区别_必修居士的博客-CSDN博客

3.计算机视觉:图像检测和图像分割有什么区别?_图像识别与分割_喜欢打酱油的老鸟的博客-CSDN博客

相关推荐
三掌柜66617 小时前
AWS Bedrock + DeepSeek-R1:开启企业级 AI 开发的新篇章
人工智能·云计算·aws
CoovallyAIHub17 小时前
OCR战场再起风云:LightOnOCR-1B凭什么比DeepSeekOCR快1.7倍?(附演示开源地址)
深度学习·算法·计算机视觉
Danceful_YJ17 小时前
24.全连接卷积神经网络(FCN)
人工智能·神经网络·语义分割·fcn
zhangrelay17 小时前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
武子康17 小时前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
大千AI助手18 小时前
LIFT:基于低秩引导的稀疏微调
人工智能·神经网络·lora·大模型·lift·大千ai助手·稀疏微调
Serverless 社区18 小时前
算力成本降低 33%,与光同尘用 Serverless AI 赋能影视商业内容生产
人工智能·云原生·serverless
L.EscaRC18 小时前
【AI基础篇】Transformer架构深度解析与前沿应用
人工智能·深度学习·transformer
王中阳Go18 小时前
3 - RAG 知识库基础 - AI 超级智能体项目教程
人工智能·agent
司马阅-SmartRead18 小时前
司马阅与数之境科技达成生态战略合作,释放1+1>2的产业赋能价值
人工智能