人脸检测之给照片加上眼镜

人脸检测


文章目录


一、背景

给人脸图像加眼镜在很多领域都有应用。比如修图换造型、眼镜店眼镜试戴、戴眼镜人脸识别等。

给人脸加眼镜的难点在于难以做到自然逼真,且人脸多种多样,角度多变,还存在饰物、头发等遮挡等。

目前主流的技术包括:直接贴图、3D模型匹配合成、GAN(生成对抗网络)等技术。

本文要介绍另外一种UV空间融合的方法,结合了直接贴图与3D模型生成的优点。该方法在京东faceX-zoo中用来给人脸及口罩,受其启发,我们尝试用来给人脸加眼镜。

二、UV空间融合法

其示意图如下:

请添加图片描述

整体步骤如下:

(1)人脸检测与关键点:对参考glasses face 图片进行face detect, 并得到key landmark points

(2)人脸对齐抠图。

(3)使用3D人脸重建技术建模3维人脸模型,本文使用prnet方法进行3维人脸重建,得到3D人脸的UV纹理图。

(4)在PS中,使用索套工具将(b)中的眼镜抠下来得到眼镜纹理图(c)。

(5)对不带眼镜的图片重复上述(1-3)步骤。

(6)将(c)(e) 两幅UV纹理图进行融合,眼镜纹理图为4通道(RGBA),alpha通道作为融合因子。

(7)进融合后的纹理图及3D人脸模型投影render到2维,即可得到带眼镜的人脸。

为了丰富眼镜的多样性,我们获得了多张眼镜UVmap图像

对另一人脸数据集进行加眼镜操作:

原图:

加眼镜后:

对于大角度人脸,依然有不错的匹配效果。

三、总结与不足

基于UV空间融合法的方法作为一种快速且易实施的加眼镜的方式,可以获得基本的戴眼镜效果。其优缺点都很明显。

优点:基于3维人脸重建,可自适应不同角度的人脸;眼镜素材丰富且获得简单;不需要复杂的渲染即可得到眼镜反光、半透视、有色眼镜等特效;能很好的保持原图的人物面部属性。

缺点:人脸yaw角度稍大效果欠佳。眼镜像是涂在皮肤上的感觉,缺乏立体感。因为眼镜图片是基于单张正脸图片抠出来的,眼镜腿等细节部分存在缺失。

四、参考

https://github.com/JDAI-CV/FaceX-Zoo

https://github.com/YadiraF/PRNet

https://github.com/YadiraF/face3d

相关推荐
lihuayong15 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
DCcsdnDC16 小时前
Airsim仿真双目相机时间戳不同步的解决办法
计算机视觉
机器视觉知识推荐、就业指导21 小时前
【数字图像处理二】图像增强与空域处理
图像处理·人工智能·经验分享·算法·计算机视觉
陈辛chenxin21 小时前
【论文带读系列(1)】《End-to-End Object Detection with Transformers》论文超详细带读 + 翻译
人工智能·目标检测·计算机视觉
深图智能1 天前
OpenCV 4.10.0 图像处理基础入门教程
图像处理·opencv·计算机视觉
Fansv5871 天前
深度学习-6.用于计算机视觉的深度学习
人工智能·深度学习·计算机视觉
SKYDROID云卓小助手1 天前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
萧鼎2 天前
利用 OpenCV 进行棋盘检测与透视变换
人工智能·opencv·计算机视觉
紫雾凌寒2 天前
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
人工智能·深度学习·神经网络·机器学习·计算机视觉·cnn·卷积神经网络
IT古董2 天前
【深度学习】计算机视觉(CV)-图像生成-风格迁移(Style Transfer)
人工智能·计算机视觉