高通滤波器,低通滤波器

1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。

python 复制代码
import cv2
import numpy as np
from scipy import ndimage

kernel_3_3 =np.array([[-1,-1,-1],
                     [-1,8,-1],
                     [-1,-1,-1]])
print(kernel_3_3)
kernel_5_5 =np.array([[-1,-1,-1,-1,-1],
                     [-1,1,2,1,-1],
                     [-1,2,4,2,-1],
                     [-1,1,2,1,-1],
                     [-1,-1,-1,-1,-1]])

img =cv2.imread("x.jpg",0)
k3=ndimage.convolve(img,kernel_3_3)
print(k3)
k5=ndimage.convolve(img,kernel_5_5)

blurred=cv2.GaussianBlur(img,(11,11),0)
g_hpf=img - blurred
cv2.imshow("3*3",k3)
cv2.imshow("5*5",k5)
cv2.imshow("g_hpf",g_hpf)
cv2.waitKey()
cv2.destroyAllWindows()

确实容易看出,第三种效果最好。

python 复制代码
import cv2
import numpy as np
from scipy import ndimage

blurKsize=7
edgeKsize=5
src=cv2.imread("x.jpg")
#模糊函数,对去除数字化的视频噪声很有效,尤其是彩色图像的噪声
blurredSrc=cv2.medianBlur(src,blurKsize)
cv2.imshow('blurredSrc',blurredSrc)
cv2.waitKey(0)
#彩色图转灰度图
graySrc=cv2.cvtColor(blurredSrc,cv2.COLOR_BGR2GRAY)
cv2.imshow('graySrc',graySrc)
cv2.waitKey(0)
#边缘检测函数,会产生明显的边缘线条
cv2.Laplacian(graySrc,cv2.CV_8U,graySrc,edgeKsize)
cv2.imshow('LapSrc',graySrc)
cv2.waitKey(0)

#黑转白,白转黑
normalizedInverseAlpha =(1.0/255)*(255 - graySrc)
cv2.imshow('normalizedSrc',normalizedInverseAlpha)
cv2.waitKey(0)

#重新恢复彩色,实现更清晰的轮廓图
channels=cv2.split(src)
for channel in channels:
    channel[:]=channel*normalizedInverseAlpha
dst=src.copy()
cv2.merge(channels,dst)
cv2.imshow('dst',dst)
cv2.waitKey(0)

使用medianBlur()作为模糊函数,它对去除数字化的视频噪声非常有效。

从BGR色彩空间转灰度色彩空间

使用Laplacian()作为边缘检测函数,它会产生明显的边缘线条

转化为黑色边缘和白色背景的图像

归一化:

3.(1)锐化

python 复制代码
import cv2
import numpy as np


src=cv2.imread("x.jpg")
kernel=np.array([[-1,-1,-1],
                 [-1,9,-1],
                 [-1,-1,-1]])
dst=src.copy()
cv2.filter2D(src,-1,kernel,dst)
cv2.imshow("pic",dst)
cv2.waitKey(0)

kernel=np.array([[-1,-1,-1],

-1,9,-1\], \[-1,-1,-1\]\]) 如果感兴趣的像素已经与其邻近的像素有一点差别,那么这个差别会增加。 这样会让图像锐化。 **filter2D()运用由用户指定的任意核或卷积矩阵。**

(2)边缘检测

复制代码
kernel=np.array([[-1,-1,-1],
                 [-1,8,-1],
                 [-1,-1,-1]])

此时为边缘检测核(权重加起来为0,把边缘转为白色,把非边缘区域转为黑色)

(3)模糊效果

python 复制代码
kernel=np.array([[0.04,0.04,0.04,0.04,0.04],
                [0.04,0.04,0.04,0.04,0.04],
                [0.04,0.04,0.04,0.04,0.04],
                [0.04,0.04,0.04,0.04,0.04],
                [0.04,0.04,0.04,0.04,0.04]
                 ])

通常权重为1,邻近像素的权重全为正。

(4)模糊加锐化(产生脊状或浮雕效果)

python 复制代码
kernel=np.array([[-2,-1,0],
                 [-1,1,1],
                 [0,1,2]])
相关推荐
吴佳浩5 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI5 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维6 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术6 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20236 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud7 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云7 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都7 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间7 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息7 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全