特征点匹配返回匹配坐标点python

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
from scipy import stats


def drawMatchesKnn_cv(img1_gray, kp1, img2_gray, kp2, goodMatch):
    h1, w1 = img1_gray.shape[:2]
    h2, w2 = img2_gray.shape[:2]

    vis = np.zeros((max(h1, h2), w1 + w2, 3), np.uint8)
    vis[:h1, :w1] = img1_gray
    vis[:h2, w1:w1 + w2] = img2_gray

    p1 = [kpp.queryIdx for kpp in goodMatch]
    p2 = [kpp.trainIdx for kpp in goodMatch]

    post1 = np.int32([kp1[pp].pt for pp in p1])
    post2 = np.int32([kp2[pp].pt for pp in p2]) + (w1, 0)

    for (x1, y1), (x2, y2) in zip(post1, post2):
        cv.line(vis, (x1, y1), (x2, y2), (0, 0, 255))

    cv.namedWindow("match", cv.WINDOW_NORMAL)
    cv.imshow("match", vis)



img1_gray = cv.imread("D:/dht/left1.png", 0)
img2_gray = cv.imread("D:/dht/right1.png", 0)
img1_gray = cv.resize(img1_gray, (1800, 2400))
img2_gray = cv.resize(img2_gray, (1800, 2400))

# sift = cv.SIFT()
# sift = cv.xfeatures2d.SIFT_create()
sift = cv.SIFT_create()
# sift = cv.SURF()
kp1, des1 = sift.detectAndCompute(img1_gray, None)
kp2, des2 = sift.detectAndCompute(img2_gray, None)
# 设置Flannde参数
FLANN_INDEX_KDTREE = 0
indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
searchParams = dict(checks=50)
flann = cv.FlannBasedMatcher(indexParams, searchParams)
matches = flann.knnMatch(des1, des2, k=2)
# bf = cv.BFMatcher(cv.NORM_L2)
# matches = bf.knnMatch(des1,des2,k=2)
# 设置好初始匹配值
destinationx = []
destinationy = []
matchesMask = [[0, 0] for i in range(len(matches))]
for i, (m, n) in enumerate(matches):
    if m.distance < 0.5 * n.distance:  # 舍弃小于0.5的匹配结果
        matchesMask[i] = [1, 0]
        # matchesMask[i] = [1, 0]
        pt1 = kp1[m.queryIdx].pt  # trainIdx    是匹配之后所对应关键点的序号,第一个载入图片的匹配关键点序号
        pt2 = kp2[n.trainIdx].pt  # queryIdx  是匹配之后所对应关键点的序号,第二个载入图片的匹配关键点序号
        destinationx.append(int(pt1[0]-pt2[0]))
        destinationy.append(int(pt1[1]-pt2[1]))
        # print(kpts1)
        print(i, pt1, pt2)


# counts = np.bincount(destinationx)
print(destinationx)
#print(stats.mode(destinationx)[0][0])

#返回众数
# print(np.argmax(counts))

# counts = np.bincount(destinationy)
#返回众数
print(destinationy)
#print(stats.mode(destinationy)[0][0])

drawParams=dict(matchColor=(0,0,255),singlePointColor=(255,0,0),matchesMask=matchesMask,flags=0) #给特征点和匹配的线定义颜色
resultimage=cv.drawMatchesKnn(img1_gray,kp1,img2_gray,kp2,matches,None,**drawParams) #画出匹配的结果
plt.imshow(resultimage)
plt.show()
相关推荐
changwan1 分钟前
基于Celery+Supervisord的异步任务管理方案
后端·python·性能优化
君秋水1 分钟前
Python异步编程指南:asyncio从入门到精通(Python 3.10+)
后端·python
MWWZ8 分钟前
读取halcon中DXF文件并创建模板
opencv·计算机视觉
君秋水15 分钟前
FastAPI教程:20个核心概念从入门到 happy使用
后端·python·程序员
试着生存28 分钟前
java根据List<Object>中的某个属性排序(数据极少,顺序固定)
java·python·list
热心市民小汪34 分钟前
管理conda下python虚拟环境
开发语言·python·conda
程序员Linc36 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉
不去幼儿园36 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法
McQueen_LT42 分钟前
聊天室Python脚本——ChatGPT,好用
开发语言·python·chatgpt
飞30043 分钟前
TP-LINK图像处理工程师(深圳)内推
图像处理·计算机视觉·业界资讯