使用PyGWalker可视化分析表格型数据

大家好,可以想象一下在Jupyter Notebook中拥有大量数据,想要对其进行分析和可视化。PyGWalker就像一个神奇的工具,能让这项工作变得超级简单。它能获取用户的数据,并将其转化为一种特殊的表格,可以与之交互,就像使用Tableau一样。可以直观地探索数据,玩转数据,查看模式和洞察力,而不会迷失在复杂的代码中。PyGWalker简化了一切,让用户可以毫不费力地快速分析和理解数据。PyGWalker由Kanaries开发。

具体探索

通过pip安装PyGWalker库:

python 复制代码
pip install pygwalker

要开始在Jupyter Notebook中使用PyGWalker,需要导入两个基本库:pandaspygwalker

python 复制代码
import pandas as pd
import pygwalker as pyg

import pandas as pd这一行允许你处理表格格式的数据,而import pygwalker as pyg则引入了PyGWalker库。导入后,你就可以将PyGWalker无缝地集成到现有工作流程中。例如,你可以使用pandas加载数据。

python 复制代码
df = pd.read_csv('my_data.csv')

然后,你可以创建一个PyGWalker实例,命名为"gwalker",将数据帧作为参数传递,如下所示:

python 复制代码
gwalker = pyg.walk(df)

执行提供的命令后,代码单元格下方会出现一个新的输出,该输出将包含一个交互式用户界面。

该界面提供了各种拖放功能,可用于分析和探索数据,它提供了一种与数据交互的便捷互动方式,让你能够执行可视化数据、探索关系等任务。

有了PyGWalker,你现在就拥有了一个类似于Tableau的用户界面,可以对数据进行分析和可视化。

PyGWalker提供了改变标记类型的灵活性,使你能够创建不同的图表。例如,你可以通过选择所需的变量和线条标记类型,轻松切换到折线图。

你还可以通过创建拼接视图来比较不同的测量值,通过将多个测量值添加到行或列,可以轻松地对它们进行并排分析和比较。

你可以根据特定类别或特征将数据整理成不同的部分,这有助于对数据的不同子集进行单独分析和比较。

PyGWalker允许你以表格格式查看数据,并自定义分析类型和语义类型。你可以轻松地以结构化的方式将数据可视化,并根据具体需求调整数据分析和解释的方式。

你还可以将数据探索结果保存到本地文件中。

总结

PyGWalker是一个提供多种功能的通用库,探索这个强大的工具可以提高你在数据分析和可视化方面的技能。

相关推荐
Leo.yuan13 分钟前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
咔咔一顿操作1 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
XiaoMu_00116 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
IT研究室1 天前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
毕设源码-郭学长1 天前
【开题答辩全过程】以电商数据可视化系统为例,包含答辩的问题和答案
信息可视化
没有梦想的咸鱼185-1037-16631 天前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
二川bro1 天前
第27节:3D数据可视化与大规模地形渲染
3d·信息可视化
星图云2 天前
从课前到课后,地理创新实验室赋能教学新范式
信息可视化
云天徽上3 天前
【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·数据挖掘·数据分析·pyecharts
界面开发小八哥3 天前
数据可视化图表库LightningChart JS v8.0上线:全新图例系统 + 数据集重构
javascript·信息可视化·数据可视化·lightningchart