PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch

有一个小的计算图,两次前向梯度累积的结果,可以看到梯度是严格相等的。


代码:

复制代码
import numpy as np
import torch


class ExampleLinear(torch.nn.Module):

    def __init__(self):
        super().__init__()
        # Initialize the weight at 1
        self.weight = torch.nn.Parameter(torch.Tensor([1]).float(),
                                         requires_grad=True)

    def forward(self, x):
        return self.weight * x


model = ExampleLinear()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)


def calculate_loss(x: torch.Tensor) -> torch.Tensor:
    y = 2 * x
    y_hat = model(x)
    temp1 = (y - y_hat)
    temp2 = temp1**2
    return temp2


# With mulitple batches of size 1
batches = [torch.tensor([4.0]), torch.tensor([2.0])]

optimizer.zero_grad()
for i, batch in enumerate(batches):
    # The loss needs to be scaled, because the mean should be taken across the whole
    # dataset, which requires the loss to be divided by the number of batches.
    temp2 = calculate_loss(batch)
    loss = temp2 / len(batches)
    loss.backward()
    print(f"Batch size 1 (batch {i}) - grad: {model.weight.grad}")
    print(f"Batch size 1 (batch {i}) - weight: {model.weight}")
    print("="*50)

# Updating the model only after all batches
optimizer.step()
print(f"Batch size 1 (final) - grad: {model.weight.grad}")
print(f"Batch size 1 (final) - weight: {model.weight}")

运行结果

复制代码
Batch size 1 (batch 0) - grad: tensor([-16.])
Batch size 1 (batch 0) - weight: Parameter containing:
tensor([1.], requires_grad=True)
==================================================
Batch size 1 (batch 1) - grad: tensor([-20.])
Batch size 1 (batch 1) - weight: Parameter containing:
tensor([1.], requires_grad=True)
==================================================
Batch size 1 (final) - grad: tensor([-20.])
Batch size 1 (final) - weight: Parameter containing:
tensor([1.2000], requires_grad=True)

然而,如果训练一个真实的模型,结果没有这么理想,比如训练一个bert,𝐵=8,𝑁=1:没有梯度累积(累积每一步),

𝐵=2,𝑁=4:梯度累积(每 4 步累积一次)

使用带有梯度累积的 Batch Normalization 通常效果不佳,原因很简单,因为 BatchNorm 统计数据无法累积。更好的解决方案是使用 Group Normalization 而不是 BatchNorm。

https://ai.stackexchange.com/questions/21972/what-is-the-relationship-between-gradient-accumulation-and-batch-size

相关推荐
聚客AI32 分钟前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545641 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
im_AMBER1 小时前
学习日志05 python
python·学习
大虫小呓1 小时前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
聽雨2371 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
哪 吒1 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
二川bro1 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~2 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研