动态范围调整(SEF算法实现)

一、背景介绍

继续在整理对比度调整相关算法,发现一篇单帧动态范围提升的算法:Simulated Exposure Fusion,论文表现看起来很秀,这里尝试对它进行了下效果复现。

二、实现流程

1、基本原理

整体来说,大致可以分为两步:

a、将单帧输入图像拆分为多帧图像,每帧图像相对输入来说,只保留部分区域信息,并对这部分区域进行了动态范围拓展。

b、对生成的多帧图像进行图像融合,得到最终结果图像,具体细节可以参考资料:杞朹:曝光融合(Exposure Fusion)

由于融合部分复用了之前讲过的算法,因此我们这里重点只关注如何生成帧。

在生成帧上,也分为两种情况:

a、外部直接指定生成帧数量。

b、算法内部自适应计算生成帧数量。

2、输入信息

a、单帧图像输入,并将输入图转换到HSV空间,对V通道处理。

b、三个输入参数:alpha, beta, lambda。

其中lambda参考论文,可以直接设置为0.125。

3.1、图像拆分帧数(外部指定)

beta可以控制生成帧数量:比如beta为0.25,那么设置生成帧数量M=1/beta=4。

3.2、图像拆分帧数(自适应生成)

a、利用直方图统计信息,计算出来图像中值,根据图像中值来反映当前图像的整理亮暗层度。

b、在后面帧序列生成上,我们可以知道,每个帧序列的有效像素范围为:

因此,我们可以根据公式:

找到序列帧之间,不存在有效像素公共区域的最大可拆帧数量,作为当前可生成帧的最大序列数量M。

对应的伪代码实现为:

4、帧序列生成

a、根据公式:

对生成序列每一帧都进行简单亮度调整,得到调整后图像f。

b、对生成序列每一帧,根据公式计算一个参数:

c、当图像f像素值范围在:

之间的时候,像素值保持不变。

否则像素值为:

通过这种方式保证当前序列帧只关注原图像

范围内的图像信息,并且保证和范围之外的像素信息过度平滑,避免出现明显截断。

d、生成帧演示:每一帧序列可以用如下一条曲线表示实际包含的原图像素信息:

部分实际序列帧效果:

三、效果对比

左边为输入图,右边为结果图像:

四、复现代码

相关的matlab代码,可以参考:IPOL Journal · Simulated Exposure Fusion

我这边做了简单的c++版本复现:

ImageQualityEnhancement/ltm/sef at master · yulinghan/ImageQualityEnhancement · GitHub

相关推荐
cyyt3 分钟前
深度学习周报(9.22~9.28)
深度学习·attention·量子计算
董厂长24 分钟前
SubAgent的“指令漂移 (Instruction Drift)“困境
人工智能·agent·mcp·subagent
金井PRATHAMA28 分钟前
框架系统在自然语言处理深度语义分析中的作用、挑战与未来展望
人工智能·自然语言处理·知识图谱
天涯路s29 分钟前
OpenCV基础操作与图像处理
图像处理·opencv·计算机视觉
小李独爱秋29 分钟前
【机器学习宝藏】深入解析经典人脸识别数据集:Olivetti Faces
人工智能·python·机器学习·计算机视觉·人脸识别·olivetti
2401_841495641 小时前
【自然语言处理】文本表示知识点梳理与习题总结
人工智能·自然语言处理·词向量·文本表示·独热编码·词-词共现矩阵·静态词嵌入
艾醒1 小时前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
深度学习·算法
Carl_奕然1 小时前
【大模型】Agent之:从Prompt到Context的演进之路
人工智能·python·语言模型·prompt·多模态
被巨款砸中1 小时前
一篇文章讲清Prompt、Agent、MCP、Function Calling
前端·vue.js·人工智能·web
eqwaak01 小时前
实战项目与工程化:端到端机器学习流程全解析
开发语言·人工智能·python·机器学习·语言模型