动态范围调整(SEF算法实现)

一、背景介绍

继续在整理对比度调整相关算法,发现一篇单帧动态范围提升的算法:Simulated Exposure Fusion,论文表现看起来很秀,这里尝试对它进行了下效果复现。

二、实现流程

1、基本原理

整体来说,大致可以分为两步:

a、将单帧输入图像拆分为多帧图像,每帧图像相对输入来说,只保留部分区域信息,并对这部分区域进行了动态范围拓展。

b、对生成的多帧图像进行图像融合,得到最终结果图像,具体细节可以参考资料:杞朹:曝光融合(Exposure Fusion)

由于融合部分复用了之前讲过的算法,因此我们这里重点只关注如何生成帧。

在生成帧上,也分为两种情况:

a、外部直接指定生成帧数量。

b、算法内部自适应计算生成帧数量。

2、输入信息

a、单帧图像输入,并将输入图转换到HSV空间,对V通道处理。

b、三个输入参数:alpha, beta, lambda。

其中lambda参考论文,可以直接设置为0.125。

3.1、图像拆分帧数(外部指定)

beta可以控制生成帧数量:比如beta为0.25,那么设置生成帧数量M=1/beta=4。

3.2、图像拆分帧数(自适应生成)

a、利用直方图统计信息,计算出来图像中值,根据图像中值来反映当前图像的整理亮暗层度。

b、在后面帧序列生成上,我们可以知道,每个帧序列的有效像素范围为:

因此,我们可以根据公式:

找到序列帧之间,不存在有效像素公共区域的最大可拆帧数量,作为当前可生成帧的最大序列数量M。

对应的伪代码实现为:

4、帧序列生成

a、根据公式:

对生成序列每一帧都进行简单亮度调整,得到调整后图像f。

b、对生成序列每一帧,根据公式计算一个参数:

c、当图像f像素值范围在:

之间的时候,像素值保持不变。

否则像素值为:

通过这种方式保证当前序列帧只关注原图像

范围内的图像信息,并且保证和范围之外的像素信息过度平滑,避免出现明显截断。

d、生成帧演示:每一帧序列可以用如下一条曲线表示实际包含的原图像素信息:

部分实际序列帧效果:

三、效果对比

左边为输入图,右边为结果图像:

四、复现代码

相关的matlab代码,可以参考:IPOL Journal · Simulated Exposure Fusion

我这边做了简单的c++版本复现:

ImageQualityEnhancement/ltm/sef at master · yulinghan/ImageQualityEnhancement · GitHub

相关推荐
uesowys4 分钟前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56784 分钟前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能1 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习