动态范围调整(SEF算法实现)

一、背景介绍

继续在整理对比度调整相关算法,发现一篇单帧动态范围提升的算法:Simulated Exposure Fusion,论文表现看起来很秀,这里尝试对它进行了下效果复现。

二、实现流程

1、基本原理

整体来说,大致可以分为两步:

a、将单帧输入图像拆分为多帧图像,每帧图像相对输入来说,只保留部分区域信息,并对这部分区域进行了动态范围拓展。

b、对生成的多帧图像进行图像融合,得到最终结果图像,具体细节可以参考资料:杞朹:曝光融合(Exposure Fusion)

由于融合部分复用了之前讲过的算法,因此我们这里重点只关注如何生成帧。

在生成帧上,也分为两种情况:

a、外部直接指定生成帧数量。

b、算法内部自适应计算生成帧数量。

2、输入信息

a、单帧图像输入,并将输入图转换到HSV空间,对V通道处理。

b、三个输入参数:alpha, beta, lambda。

其中lambda参考论文,可以直接设置为0.125。

3.1、图像拆分帧数(外部指定)

beta可以控制生成帧数量:比如beta为0.25,那么设置生成帧数量M=1/beta=4。

3.2、图像拆分帧数(自适应生成)

a、利用直方图统计信息,计算出来图像中值,根据图像中值来反映当前图像的整理亮暗层度。

b、在后面帧序列生成上,我们可以知道,每个帧序列的有效像素范围为:

因此,我们可以根据公式:

找到序列帧之间,不存在有效像素公共区域的最大可拆帧数量,作为当前可生成帧的最大序列数量M。

对应的伪代码实现为:

4、帧序列生成

a、根据公式:

对生成序列每一帧都进行简单亮度调整,得到调整后图像f。

b、对生成序列每一帧,根据公式计算一个参数:

c、当图像f像素值范围在:

之间的时候,像素值保持不变。

否则像素值为:

通过这种方式保证当前序列帧只关注原图像

范围内的图像信息,并且保证和范围之外的像素信息过度平滑,避免出现明显截断。

d、生成帧演示:每一帧序列可以用如下一条曲线表示实际包含的原图像素信息:

部分实际序列帧效果:

三、效果对比

左边为输入图,右边为结果图像:

四、复现代码

相关的matlab代码,可以参考:IPOL Journal · Simulated Exposure Fusion

我这边做了简单的c++版本复现:

ImageQualityEnhancement/ltm/sef at master · yulinghan/ImageQualityEnhancement · GitHub

相关推荐
九河云7 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10437 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里7 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1787 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京8 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC8 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬8 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao9 小时前
AI工作流如何开始
人工智能
小途软件9 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者9 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai