机器学习:异常检测

问题定义

anomaly,outlier, novelty, exceptions

不同的方法使用不同的名词定义这类问题。

应用

二分类

假如只有正常的数据,而异常的数据的范围非常广的话(无法穷举),二分类这些不好做。另外就是异常资料不太好收集。

分类



每张图片都有标注,就可以来训练一个辛普森家族的成员分类器。

基于classifer来做异常检测。

基于信心分数来做异常问题,大于某值就是正常,小于某值就是异常

最大分数作为confidence


部分数据会有误判的情况

信心分估计

直接教网络信心分数,不仅是做分类任务C,也会给出信心分P

Train 和 Eval

100张辛普森家族图片,5张异常图片

  • 有蓝色的正常图被错误分类成异常
  • 有红色的异常图被错误分类成正常

这个时候用dev set上评估系统,这是一个二元分类问题。

正常异常比例的分布是非常悬殊的,这个系统可以有很高的准确率,但是没有做什么事,用acc准确率分类是没有意义的。

使用混淆矩阵:

cost table,做错的行为的代价,算一个分数:

针对自己的任务设定cost table。还有一些方法来衡量,比如AUC(roc曲线的面积)。

问题


脸上是黄的,然后系统给的分数就高,说明这个分类系统学到的并不是认清人,而是脸是否是黄的。

假设可以收到一些异常资料,可以学习在分类的同时,也给出异常的分数,但是这类数据不易收集。可以考虑使用GAN生成异常数据。

没有标签的场景


正常玩家和异常玩家(小白)

问题定义




需要数值化的方法来给每一个玩家的分数。 f ( 斯塔 ) f(斯塔) f(斯塔) 概率密度估计

高斯分布




相关推荐
Blossom.1185 小时前
量子计算与经典计算的融合与未来
人工智能·深度学习·机器学习·计算机视觉·量子计算
硅谷秋水5 小时前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
小李独爱秋7 小时前
机器学习开发全流程详解:从数据到部署的完整指南
人工智能·机器学习
Dovis(誓平步青云)7 小时前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
ZTLJQ7 小时前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
赵钰老师7 小时前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
nuise_7 小时前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
databook9 小时前
线性模型与多分类问题:简单高效的力量
python·机器学习·scikit-learn
就决定是你啦!15 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang0518 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习