机器学习:异常检测

问题定义

anomaly,outlier, novelty, exceptions

不同的方法使用不同的名词定义这类问题。

应用

二分类

假如只有正常的数据,而异常的数据的范围非常广的话(无法穷举),二分类这些不好做。另外就是异常资料不太好收集。

分类



每张图片都有标注,就可以来训练一个辛普森家族的成员分类器。

基于classifer来做异常检测。

基于信心分数来做异常问题,大于某值就是正常,小于某值就是异常

最大分数作为confidence


部分数据会有误判的情况

信心分估计

直接教网络信心分数,不仅是做分类任务C,也会给出信心分P

Train 和 Eval

100张辛普森家族图片,5张异常图片

  • 有蓝色的正常图被错误分类成异常
  • 有红色的异常图被错误分类成正常

这个时候用dev set上评估系统,这是一个二元分类问题。

正常异常比例的分布是非常悬殊的,这个系统可以有很高的准确率,但是没有做什么事,用acc准确率分类是没有意义的。

使用混淆矩阵:

cost table,做错的行为的代价,算一个分数:

针对自己的任务设定cost table。还有一些方法来衡量,比如AUC(roc曲线的面积)。

问题


脸上是黄的,然后系统给的分数就高,说明这个分类系统学到的并不是认清人,而是脸是否是黄的。

假设可以收到一些异常资料,可以学习在分类的同时,也给出异常的分数,但是这类数据不易收集。可以考虑使用GAN生成异常数据。

没有标签的场景


正常玩家和异常玩家(小白)

问题定义




需要数值化的方法来给每一个玩家的分数。 f ( 斯塔 ) f(斯塔) f(斯塔) 概率密度估计

高斯分布




相关推荐
悠哉悠哉愿意9 分钟前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模
ningmengjing_10 分钟前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
nju_spy1 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
THMAIL2 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
非门由也2 小时前
《sklearn机器学习——多标签排序指标》
人工智能·机器学习·sklearn
XZSSWJS2 小时前
机器学习基础-day06-TensorFlow线性回归
人工智能·机器学习·tensorflow
Wilber的技术分享3 小时前
【大模型实战笔记 1】Prompt-Tuning方法
人工智能·笔记·机器学习·大模型·llm·prompt
博大世界3 小时前
解剖智驾“大脑”:一文读懂自动驾驶系统软件架构
人工智能·机器学习·自动驾驶
Coovally AI模型快速验证4 小时前
无人机小目标检测新SOTA:MASF-YOLO重磅开源,多模块协同助力精度飞跃
人工智能·yolo·目标检测·机器学习·计算机视觉·无人机