机器学习:异常检测

问题定义

anomaly,outlier, novelty, exceptions

不同的方法使用不同的名词定义这类问题。

应用

二分类

假如只有正常的数据,而异常的数据的范围非常广的话(无法穷举),二分类这些不好做。另外就是异常资料不太好收集。

分类



每张图片都有标注,就可以来训练一个辛普森家族的成员分类器。

基于classifer来做异常检测。

基于信心分数来做异常问题,大于某值就是正常,小于某值就是异常

最大分数作为confidence


部分数据会有误判的情况

信心分估计

直接教网络信心分数,不仅是做分类任务C,也会给出信心分P

Train 和 Eval

100张辛普森家族图片,5张异常图片

  • 有蓝色的正常图被错误分类成异常
  • 有红色的异常图被错误分类成正常

这个时候用dev set上评估系统,这是一个二元分类问题。

正常异常比例的分布是非常悬殊的,这个系统可以有很高的准确率,但是没有做什么事,用acc准确率分类是没有意义的。

使用混淆矩阵:

cost table,做错的行为的代价,算一个分数:

针对自己的任务设定cost table。还有一些方法来衡量,比如AUC(roc曲线的面积)。

问题


脸上是黄的,然后系统给的分数就高,说明这个分类系统学到的并不是认清人,而是脸是否是黄的。

假设可以收到一些异常资料,可以学习在分类的同时,也给出异常的分数,但是这类数据不易收集。可以考虑使用GAN生成异常数据。

没有标签的场景


正常玩家和异常玩家(小白)

问题定义




需要数值化的方法来给每一个玩家的分数。 f ( 斯塔 ) f(斯塔) f(斯塔) 概率密度估计

高斯分布




相关推荐
笔触狂放2 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
亲持红叶3 小时前
什么是集成学习
人工智能·机器学习
种花生的图图4 小时前
《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记
人工智能·笔记·深度学习·学习·机器学习
QQ_7781329744 小时前
Python从0到100(八十五):神经网络与迁移学习在猫狗分类中的应用
机器学习·迁移学习
让我试试哈5 小时前
与机器学习相关的概率论重要概念的介绍和说明
人工智能·机器学习·概率论·强化学习
金融OG5 小时前
99.17 金融难点通俗解释:归母净利润
大数据·数据库·python·机器学习·金融
时间很奇妙!6 小时前
无监督学习:聚类、异常检测
学习·机器学习·聚类
Kacey Huang16 小时前
Sklearn机器学习第十五天|机器学习算法原理
人工智能·算法·机器学习·sklearn
胡萝卜不甜17 小时前
通过Python编程语言实现“机器学习”小项目教程案例
开发语言·python·机器学习