机器学习:异常检测

问题定义

anomaly,outlier, novelty, exceptions

不同的方法使用不同的名词定义这类问题。

应用

二分类

假如只有正常的数据,而异常的数据的范围非常广的话(无法穷举),二分类这些不好做。另外就是异常资料不太好收集。

分类



每张图片都有标注,就可以来训练一个辛普森家族的成员分类器。

基于classifer来做异常检测。

基于信心分数来做异常问题,大于某值就是正常,小于某值就是异常

最大分数作为confidence


部分数据会有误判的情况

信心分估计

直接教网络信心分数,不仅是做分类任务C,也会给出信心分P

Train 和 Eval

100张辛普森家族图片,5张异常图片

  • 有蓝色的正常图被错误分类成异常
  • 有红色的异常图被错误分类成正常

这个时候用dev set上评估系统,这是一个二元分类问题。

正常异常比例的分布是非常悬殊的,这个系统可以有很高的准确率,但是没有做什么事,用acc准确率分类是没有意义的。

使用混淆矩阵:

cost table,做错的行为的代价,算一个分数:

针对自己的任务设定cost table。还有一些方法来衡量,比如AUC(roc曲线的面积)。

问题


脸上是黄的,然后系统给的分数就高,说明这个分类系统学到的并不是认清人,而是脸是否是黄的。

假设可以收到一些异常资料,可以学习在分类的同时,也给出异常的分数,但是这类数据不易收集。可以考虑使用GAN生成异常数据。

没有标签的场景


正常玩家和异常玩家(小白)

问题定义




需要数值化的方法来给每一个玩家的分数。 f ( 斯塔 ) f(斯塔) f(斯塔) 概率密度估计

高斯分布




相关推荐
晓枫-迷麟1 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
sensen_kiss2 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang2 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_10222 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.1182 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Aurora-silas3 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理
安於宿命6 小时前
【machine learning】COVID-19 daily cases prediction
人工智能·机器学习
razelan7 小时前
第一例:石头剪刀布的机器学习(xedu,示例15)
人工智能·机器学习
nju_spy7 小时前
牛客网 AI题(一)机器学习 + 深度学习
人工智能·深度学习·机器学习·lstm·笔试·损失函数·自注意力机制
墨利昂10 小时前
机器学习和深度学习模型训练流程
人工智能·深度学习·机器学习