掌握NLTK:Python自然语言处理库中级教程

在之前的初级教程中,我们已经了解了NLTK(Natural Language Toolkit)的基本用法,如进行文本分词、词性标注和停用词移除等。在本篇中级教程中,我们将进一步探索NLTK的更多功能,包括词干提取、词形还原、n-gram模型以及词云的绘制。

一、词干提取

词干提取是一种将词语简化为其基本形式或词干的过程。例如,"running"、"runner"和"ran"的词干可能都是"run"。在NLTK中,我们可以使用Porter词干提取器进行词干提取:

python 复制代码
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize

ps = PorterStemmer()

words = ["run", "runner", "running", "ran"]
for w in words:
    print(ps.stem(w))

二、词形还原

与词干提取相似,词形还原也是简化词语的一种方式,但它保留的是词语的词形,而不仅仅是词干。在NLTK中,我们可以使用WordNet词形还原器进行词形还原:

python 复制代码
from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

print(lemmatizer.lemmatize("running"))
print(lemmatizer.lemmatize("ran", pos='v'))

三、n-gram模型

n-gram是一种语言模型,用于预测下一个词的可能性。n-gram模型基于统计的方法,考虑前n-1个词来预测下一个词。在NLTK中,我们可以使用ngrams函数来生成n-gram:

python 复制代码
from nltk import ngrams
from nltk.tokenize import word_tokenize

sentence = "I love to play football"
n = 2
grams = ngrams(word_tokenize(sentence), n)
for gram in grams:
    print(gram)

四、绘制词云

词云是一种可视化技术,用于表示文本数据中词的频率。在NLTK中,虽然没有直接提供绘制词云的函数,但我们可以结合wordcloud库来创建词云:

python 复制代码
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "NLTK is a leading platform for building Python programs to work with human language data."
stop_words = set(stopwords.words('english'))

words = word_tokenize(text)
words = [word for word in words if word not in stop_words]

wordcloud = WordCloud().generate(' '.join(words))

plt.imshow(wordcloud)
plt.axis("off")
plt.show()

以上,我们介绍了NLTK库中的一些中级功能,包括词干提取、词形还原、n-gram模型和词云的绘制等。然而,NLTK还有更多高级的功能和特性,如情感分析、语义角色标注等,值得我们进一步探索和学习。

相关推荐
QZQ541881 天前
C++编译期计算
后端
饕餮争锋1 天前
Spring内置的Bean作用域介绍
java·后端·spring
CryptoRzz1 天前
美股 (US) 与 墨西哥 (Mexico) 股票数据接口集成指南
后端
培根芝士1 天前
使用llm-compressor 对 Qwen3-14B 做 AWQ + INT4 量化
人工智能·python
拾贰_C1 天前
【Python | Anaconda】 python-Anaconda 一些命令使用
开发语言·python
张人大 Renda Zhang1 天前
Java 虚拟线程 Virtual Thread:让“每请求一线程”在高并发时代复活
java·jvm·后端·spring·架构·web·虚拟线程
Aspect of twilight1 天前
ACM输入输出格式详解
python·acm
一勺菠萝丶1 天前
解决 SLF4J 警告问题 - 完整指南
java·spring boot·后端
见识星球1 天前
名企校招攻略
大数据·python
TL滕1 天前
从0开始学算法——第四天(题目参考答案)
数据结构·笔记·python·学习·算法