机器学习之弹性网络(Elastic Net)

弹性网络

代码原文

下面代码参考scikit-learn中文社区,链接在上面。

但是由于scikit-learn中文社区上的代码有些地方跑不通,故对此代码做了修改,输出结果与社区中显示的结果相同。

对弹性网络进行简单的介绍:

ElasticNet是一个训练时同时用ℓ1和ℓ2范数进行正则化的线性回归模型,lasso是使用ℓ1范数进行正则化的线性回归模型。
弹性网络简弹性网络简介弹性网络简

python 复制代码
from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

X, y = datasets.load_diabetes(return_X_y=True)


X /= X.std(axis=0)  # Standardize data (easier to set the l1_ratio parameter)
print("------------------------------------")
print(X)
print("------------------------------------")
print(y)
# Compute paths

eps = 5e-3  # the smaller it is the longer is the path

print("Computing regularization path using the lasso...")
# alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps=eps, fit_intercept=False)
alphas_lasso, coefs_lasso, _ = lasso_path(X, y)

print("Computing regularization path using the positive lasso...")
# alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
#     X, y, eps=eps, positive=True, fit_intercept=False)
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
    X, y, eps=eps, positive=True)

print("Computing regularization path using the elastic net...")
# alphas_enet, coefs_enet, _ = enet_path(
#     X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
alphas_enet, coefs_enet, _ = enet_path(
    X, y, eps=eps, l1_ratio=0.8)

print("Computing regularization path using the positive elastic net...")
# alphas_positive_enet, coefs_positive_enet, _ = enet_path(
#     X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
alphas_positive_enet, coefs_positive_enet, _ = enet_path(
    X, y, eps=eps, l1_ratio=0.8, positive=True)
print("------------------------------------")
print(alphas_positive_enet)
print("------------------------------------")
print(coefs_positive_enet)
# Display results

plt.figure(1)
colors = cycle(['b', 'r', 'g', 'c', 'k'])
neg_log_alphas_lasso = -np.log10(alphas_lasso)
neg_log_alphas_enet = -np.log10(alphas_enet)
for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors):
    l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
    l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')


plt.figure(2)
neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso)
for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors):
    l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
    l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')


plt.figure(3)
neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet)
for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors):
    l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c)
    l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),
           loc='lower left')
plt.axis('tight')
plt.show()
相关推荐
Francek Chen1 天前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
九章云极AladdinEdu1 天前
AI集群全链路监控:从GPU微架构指标到业务Metric关联
人工智能·pytorch·深度学习·架构·开源·gpu算力
惯导马工1 天前
【论文导读】IDOL: Inertial Deep Orientation-Estimation and Localization
深度学习·算法
爱学习的茄子1 天前
Function Call:让AI从文本生成走向智能交互的技术革命
前端·深度学习·openai
精灵vector1 天前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain
java1234_小锋1 天前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)
python·机器学习·scikit-learn
CoovallyAIHub1 天前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
几十个像素的小目标,为何难倒无人机?LCW-YOLO让无人机小目标检测不再卡顿
深度学习·算法·计算机视觉
万邦科技Lafite1 天前
实战演练:通过API获取商品详情并展示
大数据·数据库·python·开放api接口