机器学习之弹性网络(Elastic Net)

弹性网络

代码原文

下面代码参考scikit-learn中文社区,链接在上面。

但是由于scikit-learn中文社区上的代码有些地方跑不通,故对此代码做了修改,输出结果与社区中显示的结果相同。

对弹性网络进行简单的介绍:

ElasticNet是一个训练时同时用ℓ1和ℓ2范数进行正则化的线性回归模型,lasso是使用ℓ1范数进行正则化的线性回归模型。
弹性网络简弹性网络简介弹性网络简

python 复制代码
from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

X, y = datasets.load_diabetes(return_X_y=True)


X /= X.std(axis=0)  # Standardize data (easier to set the l1_ratio parameter)
print("------------------------------------")
print(X)
print("------------------------------------")
print(y)
# Compute paths

eps = 5e-3  # the smaller it is the longer is the path

print("Computing regularization path using the lasso...")
# alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps=eps, fit_intercept=False)
alphas_lasso, coefs_lasso, _ = lasso_path(X, y)

print("Computing regularization path using the positive lasso...")
# alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
#     X, y, eps=eps, positive=True, fit_intercept=False)
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
    X, y, eps=eps, positive=True)

print("Computing regularization path using the elastic net...")
# alphas_enet, coefs_enet, _ = enet_path(
#     X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
alphas_enet, coefs_enet, _ = enet_path(
    X, y, eps=eps, l1_ratio=0.8)

print("Computing regularization path using the positive elastic net...")
# alphas_positive_enet, coefs_positive_enet, _ = enet_path(
#     X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
alphas_positive_enet, coefs_positive_enet, _ = enet_path(
    X, y, eps=eps, l1_ratio=0.8, positive=True)
print("------------------------------------")
print(alphas_positive_enet)
print("------------------------------------")
print(coefs_positive_enet)
# Display results

plt.figure(1)
colors = cycle(['b', 'r', 'g', 'c', 'k'])
neg_log_alphas_lasso = -np.log10(alphas_lasso)
neg_log_alphas_enet = -np.log10(alphas_enet)
for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors):
    l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
    l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')


plt.figure(2)
neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso)
for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors):
    l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
    l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')


plt.figure(3)
neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet)
for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors):
    l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c)
    l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),
           loc='lower left')
plt.axis('tight')
plt.show()
相关推荐
千天夜20 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
封步宇AIGC26 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
何曾参静谧26 分钟前
「Py」Python基础篇 之 Python都可以做哪些自动化?
开发语言·python·自动化
m0_5236742127 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
Prejudices30 分钟前
C++如何调用Python脚本
开发语言·c++·python
我狠狠地刷刷刷刷刷43 分钟前
中文分词模拟器
开发语言·python·算法
Jam-Young1 小时前
Python的装饰器
开发语言·python
Mr.咕咕1 小时前
Django 搭建数据管理web——商品管理
前端·python·django
AnFany2 小时前
LeetCode【0028】找出字符串中第一个匹配项的下标
python·算法·leetcode·字符串·kmp·字符串匹配
爪哇学长2 小时前
Java API类与接口:日期类型与集合的使用
java·开发语言·python