文本NLP噪音预处理(加拼写检查)

最近总结修改了下预处理方法,记录下

首先download需要的依赖

bash 复制代码
pip install pyenchant
bash 复制代码
pip install nltk

pyenchant 是用来检测拼写正确的,如果你的文本里面可能包含非正确拼写的单词,那就忽略它,nltk用来做分词的。

bash 复制代码
python -m nltk.downloader punkt
python -m nltk.downloader stopwords
python 复制代码
from nltk.corpus import stopwords
import nltk
import enchant
import re

def is_spelled_correctly(word, language='en_US'):
        spell_checker = enchant.Dict(language)
        return spell_checker.check(word)
    
def preprocess_text(text):
        text= re.sub(r'\W+', ' ',re.sub(r'[0-9]+', '', text.replace('-', '').replace('_', ' ')))
        words=nltk.word_tokenize(text)
        stop_words = set(stopwords.words('english'))
        words = [item for word in words for item in re.findall(r'[A-Z]+[a-z]*|[a-z]+', word)if is_spelled_correctly(item) and item.lower() not in stop_words]
        return ' '.join(words).lower()

if __name__ == '__main__':
    print(preprocess_text('ServiceHandlerId caedbe-85432-xssc-dsdabffdddbea An exception of some microservice TargetDownService occurred and was test #@/*-sss '))
#service handler id exception target service occurred test

这里最后再转小写是因为防止ServiceHandlerId 这种连续的单词链接成的字符串被拼写检查剔除,只有保持驼峰情况下,才能用 re.findall(r'[A-Z]+[a-z]*|[a-z]+', word) 成功把他分成单独的单词,所以最后再处理大小写。

改进方案1:

之后测试的时候发现数据量一大,他就很慢,后面优化了一下,速度大大提升了

python 复制代码
from nltk.corpus import stopwords
import nltk
import enchant
import re

spell_checker = enchant.Dict(language)

def memoize(func):
        cache = {}
        def wrapper(*args):
            if args not in cache:
                cache[args] = func(*args)
            return cache[args]
        return wrapper

@memoize
def check_spelling(word):
    return spell_checker.check(word)


def preprocess_text(text):
        text= re.sub(r'\W+', ' ',re.sub(r'[0-9]+', '', text.replace('-', '').replace('_', ' ')))
        words=nltk.word_tokenize(text)
        stop_words = set(stopwords.words('english'))
        words = [item for word in words for item in re.findall(r'[A-Z]+[a-z]*|[a-z]+', word)if check_spelling(item) and item.lower() not in stop_words]
        return ' '.join(words).lower()

if __name__ == '__main__':
    print(preprocess_text('ServiceHandlerId caedbe-85432-xssc-dsdabffdddbea An exception of some microservice TargetDownService occurred and was test #@/*-sss '))
#service handler id exception target service occurred test

这里面使用了memoization 技术,它是一种将函数调用和结果存储在一个字典中的优化技术。我这里用来缓存单词的拼写检查结果。

这样之后数据量大了之后速度依然不会太慢了。

改进方案2:

使用spellchecker 这个的速度就比enchant快的多

bash 复制代码
pip install pyspellchecker
python 复制代码
spell = SpellChecker()
def preprocess_text(text):
        text= re.sub(r'\W+', ' ',re.sub(r'[0-9]+', '', text.replace('-', '').replace('_', ' ')))
        words=nltk.word_tokenize(text)
        stop_words = set(stopwords.words('english'))
        words = [item for word in words for item in spell.known(re.findall(r'[A-Z]+[a-z]*|[a-z]+', word)) if  item.lower() not in stop_words]
        return ' '.join(words).lower()

区别:

SpellChecker是一个基于编辑距离的拼写检查库,它可以在内存中加载一个词典,并对给定的单词列表进行快速的拼写检查。enchant是一个基于C语言的拼写检查库,它可以使用不同的后端,如aspell, hunspell, ispell等,来检查单词是否存在于词典中。SpellChecker比enchant更快,尤其是当单词列表很大时。

相关推荐
编程小白_正在努力中3 分钟前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海17 分钟前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥18 分钟前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在1 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星1 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin1 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群1 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸2 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI2 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99762 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习