秋招算法备战第37天 | 738.单调递增的数字、968.监控二叉树、贪心算法总结

738. 单调递增的数字 - 力扣(LeetCode)

这个问题是关于找到一个小于或等于给定数字n的最大单调递增数字。

我们可以将数字n转换为字符数组,然后从左到右扫描,寻找第一个违反单调递增条件的位置。一旦找到这样的位置,我们将该位置上的数字减一,并将其右侧的所有数字设置为9,以使得整个数字尽可能大。

然而,这个策略可能会导致左侧的一些数字违反单调递增的条件,因此我们需要从违反位置开始向左扫描,以确保整个数字仍然是单调递增的。

以下是解决问题的Python代码:

python 复制代码
def monotoneIncreasingDigits(n: int) -> int:
    digits = list(str(n))
    n = len(digits)
    pos = n  # 用来记录第一个违反单调递增条件的位置

    # 扫描从左到右找到第一个违反单调递增条件的位置
    for i in range(n - 1, 0, -1):
        if digits[i] < digits[i - 1]:
            pos = i
            digits[i - 1] = str(int(digits[i - 1]) - 1)

    # 将pos右侧的所有数字设置为9
    for i in range(pos, n):
        digits[i] = '9'

    return int(''.join(digits))

我们可以用给定的示例来测试这个函数:

python 复制代码
print(monotoneIncreasingDigits(10))  # 输出: 9
print(monotoneIncreasingDigits(1234))  # 输出: 1234
print(monotoneIncreasingDigits(332))  # 输出: 299

注:这题的关键还是通过样例观察规律,找到贪心的解法

968. 监控二叉树 - 力扣(LeetCode)

使用贪心算法来解决此问题的关键思想是自底向上遍历二叉树,并尽可能地在没有摄像头的父节点上放置摄像头。以下是具体步骤和实现:

  1. 我们可以自底向上遍历二叉树,使用后序遍历。
  2. 为了记录每个节点的状态,我们可以使用三个常量表示:0表示未监视,1表示有摄像头,2表示被监视。
  3. 如果任何子节点未监视,则在当前节点放置摄像头。
  4. 如果任何子节点有摄像头,则当前节点被监视。
  5. 如果所有子节点都被监视,则当前节点未监视。
  6. 我们需要确保根节点被监视,所以如果根节点未监视,则增加一个摄像头。

以下是Python代码实现:

python 复制代码
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

def minCameraCover(root: TreeNode) -> int:
    NOT_MONITORED, MONITORED_WITHOUT_CAM, MONITORED_WITH_CAM = 0, 1, 2
    cameras = 0

    # 后序遍历函数
    def dfs(node):
        nonlocal cameras
        if not node:
            return MONITORED_WITHOUT_CAM

        left = dfs(node.left)
        right = dfs(node.right)

        if left == NOT_MONITORED or right == NOT_MONITORED:
            cameras += 1
            return MONITORED_WITH_CAM

        if left == MONITORED_WITH_CAM or right == MONITORED_WITH_CAM:
            return MONITORED_WITHOUT_CAM

        return NOT_MONITORED

    # 如果根节点未监视,则增加一个摄像头
    if dfs(root) == NOT_MONITORED:
        cameras += 1

    return cameras

可以使用上面给出的示例来测试该函数,结果应与之前相同。这种贪心策略确保了在满足所有约束的情况下使用的摄像头数量最少。

贪心算法总结

如果找出局部最优并可以推出全局最优,就是贪心,如果局部最优都没找出来,就不是贪心,可能是单纯的模拟。

在做贪心题的过程中,如果再来一个数据证明,其实没有必要,手动模拟一下,如果找不出反例,就试试贪心。面试中,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了

星友总结的思维导图如下

相关推荐
焦耳加热44 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
wan5555cn1 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u6061 小时前
常用排序算法核心知识点梳理
算法·排序
蒋星熠4 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油4 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream4 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL4 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
空白到白5 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
索迪迈科技5 小时前
java后端工程师进修ing(研一版 || day40)
java·开发语言·学习·算法
zzzsde5 小时前
【数据结构】队列
数据结构·算法