73. 矩阵置零

题目链接:力扣

解题思路:

方法一:比较容易想到的方向,使用两个数组row和col保存有0的行或者列,然后将有0的那一行或那一列的所有元素都设置为0

AC代码

java 复制代码
class Solution {
    public void setZeroes(int[][] matrix) {
        int x = 0;
        boolean[] row  = new boolean[matrix.length];
        boolean[] col = new boolean[matrix[0].length];

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (matrix[i][j]==0){
                    row[i]=true;
                    col[j]=true;
                }
            }
        }

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (row[i]||col[j]){
                    matrix[i][j]=0;
                }
            }
        }
    }
}

这种方式的时间复杂度为O(mn) ,空间复杂度为O(m+n)

解法二:空间复杂度为O(1)

可以使用矩阵的第一行和第一列来记录当前行或当前列是否需要更新

算法步骤:

  1. 遍历整个矩阵,如果某个元素为0,就将该元素所在的行和列的首元素标记为0,表示该行和列需要置0。但是需要使用两个额外的变量来记录原来的第一行和第一列是否有0。
  2. 更新时从第二行和第二列开始更新,如果某行或某列的首元素为0,说明该行或该列需要置0,
  3. 最后判断第一行和第一列是否需要置0

AC代码

java 复制代码
class Solution {
    public static void setZeroes(int[][] matrix) {
        boolean firstRow = false;
        boolean firstCol = false;
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                    if (i == 0) {
                        firstRow = true;
                    }
                    if (j == 0) {
                        firstCol = true;
                    }
                }
            }
        }
        for (int i = 1; i < matrix.length; i++) {
            for (int j = 1; j < matrix[0].length; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
        }

        if (firstRow) {
            Arrays.fill(matrix[0], 0);
        }
        if (firstCol) {
            for (int i = 0; i < matrix.length; i++) {
                matrix[i][0] = 0;
            }
        }
    }
}
相关推荐
lrh1228006 分钟前
详解决策树算法:分类任务核心原理、形成流程与剪枝优化
算法·决策树·机器学习
期末考复习中,蓝桥杯都没时间学了11 分钟前
力扣刷题15
算法·leetcode·职场和发展
2301_8174973316 分钟前
C++中的装饰器模式高级应用
开发语言·c++·算法
m0_5494166620 分钟前
C++编译期字符串处理
开发语言·c++·算法
m0_5811241920 分钟前
C++中的适配器模式实战
开发语言·c++·算法
A尘埃25 分钟前
零售连锁店生鲜品类销量预测——线性回归(Linear Regression)
算法·线性回归·零售
u01092727138 分钟前
C++与人工智能框架
开发语言·c++·算法
Fleshy数模1 小时前
从欠拟合到正则化:用逻辑回归破解信用卡失信检测的召回率困境
算法·机器学习·逻辑回归
im_AMBER1 小时前
Leetcode 111 两数相加
javascript·笔记·学习·算法·leetcode
TracyCoder1231 小时前
LeetCode Hot100(21/100)——234. 回文链表
算法·leetcode·链表