73. 矩阵置零

题目链接:力扣

解题思路:

方法一:比较容易想到的方向,使用两个数组row和col保存有0的行或者列,然后将有0的那一行或那一列的所有元素都设置为0

AC代码

java 复制代码
class Solution {
    public void setZeroes(int[][] matrix) {
        int x = 0;
        boolean[] row  = new boolean[matrix.length];
        boolean[] col = new boolean[matrix[0].length];

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (matrix[i][j]==0){
                    row[i]=true;
                    col[j]=true;
                }
            }
        }

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (row[i]||col[j]){
                    matrix[i][j]=0;
                }
            }
        }
    }
}

这种方式的时间复杂度为O(mn) ,空间复杂度为O(m+n)

解法二:空间复杂度为O(1)

可以使用矩阵的第一行和第一列来记录当前行或当前列是否需要更新

算法步骤:

  1. 遍历整个矩阵,如果某个元素为0,就将该元素所在的行和列的首元素标记为0,表示该行和列需要置0。但是需要使用两个额外的变量来记录原来的第一行和第一列是否有0。
  2. 更新时从第二行和第二列开始更新,如果某行或某列的首元素为0,说明该行或该列需要置0,
  3. 最后判断第一行和第一列是否需要置0

AC代码

java 复制代码
class Solution {
    public static void setZeroes(int[][] matrix) {
        boolean firstRow = false;
        boolean firstCol = false;
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                    if (i == 0) {
                        firstRow = true;
                    }
                    if (j == 0) {
                        firstCol = true;
                    }
                }
            }
        }
        for (int i = 1; i < matrix.length; i++) {
            for (int j = 1; j < matrix[0].length; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
        }

        if (firstRow) {
            Arrays.fill(matrix[0], 0);
        }
        if (firstCol) {
            for (int i = 0; i < matrix.length; i++) {
                matrix[i][0] = 0;
            }
        }
    }
}
相关推荐
Promise485几秒前
贝尔曼公式的迭代求解笔记
笔记·算法
福尔摩斯张1 小时前
Linux进程间通信(IPC)机制深度解析与实践指南
linux·运维·服务器·数据结构·c++·算法
你好~每一天1 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法
杰克尼1 小时前
3. 分巧克力
java·数据结构·算法
zmzb01032 小时前
C++课后习题训练记录Day39
数据结构·c++·算法
Ayanami_Reii3 小时前
进阶数学算法-取石子游戏(ZJOI2009)
数学·算法·游戏·动态规划·区间dp·博弈论
一只小小汤圆3 小时前
已知圆弧的起点、终点、凸度 求圆弧的圆心
算法
丸码3 小时前
Java HashMap深度解析
算法·哈希算法·散列表
算法与编程之美3 小时前
Java数组动态扩容
java·开发语言·python·算法
2301_764441334 小时前
三维建筑非法入侵情景推演
python·学习·算法