PyTorch Lightning教程五:Debug调试

如果遇到了这样一个问题,当一次训练模型花了好几天,结果突然在验证或测试的时候崩掉了,这个时候其实是很奔溃的,主要还是由于没有提前知道哪些时候会出现什么问题,本节会引入Lightning的Debug方案

1.fast_dev_run参数

Trainer中的fast_dev_run参数通过你的训练器运行5批训练、验证、测试和预测数据,看看是否有任何错误,如下

python 复制代码
Trainer(fast_dev_run=True)

如果fast_dev_run设置为7,则表示训练7个batch每次

⚠️注意:这个参数将禁用tuner、checkpoint callbacks, early stopping callbacks, loggers 和 logger callbacks(如 LearningRateMonitor和DeviceStatsMonitor)。

2.减少epoch长度

有时,我们只需要使用训练、val、测试或预测数据的一小部分(或一组批次),来看看是否有错误。例如,可以使用20%的训练集和1%的验证集。

在像Imagenet这样的大型数据集上,这可以帮助我们更快地调试或测试一些东西,而不是等待一个完整的epoch。

复制代码
# 只使用10%的训练数据和1%的验证数据
trainer = Trainer(limit_train_batches=0.1, limit_val_batches=0.01)

# 使用10批次训练和5批次验证
trainer = Trainer(limit_train_batches=10, limit_val_batches=5)

3.运行一次完整性验证

Lightning在训练开始时有2个验证的步骤。这避免了在验证循环中陷入冗长的训练循环。

python 复制代码
trainer = Trainer(num_sanity_val_steps=2)

4.打印模型相关参数

每当调用.fit()函数时,训练器将打印LightningModule的权重摘要,例如

python 复制代码
trainer.fit(...)

则出现

复制代码
  | Name  | Type        | Params
----------------------------------
0 | net   | Sequential  | 132 K
1 | net.0 | Linear      | 131 K
2 | net.1 | BatchNorm1d | 1.0 K

需要将子模块添加到摘要中,添加一个ModelSummary,如下操作

python 复制代码
# 方法1.引入回调函数
from lightning.pytorch.callbacks import ModelSummary
trainer = Trainer(callbacks=[ModelSummary(max_depth=-1)])  # 回调函数ModelSummary
trainer.fit()
# 注:如果不打印,则可以运行 Trainer(enable_model_summary=False)


# 当然也可以下面这样子,直接打印
# 方法2.不调用fit
model = LitModel()
summary = ModelSummary(model, max_depth=-1)
print(summary)

4.所有中间层的输入输出

另一个调试工具是通过在LightningModule中设置example_input_array属性来显示所有层的中间输入和输出大小。

python 复制代码
class LitModel(LightningModule):
    def __init__(self, *args, **kwargs):
        self.example_input_array = torch.Tensor(32, 1, 28, 28)

当执行.fit()时,会打印如下

复制代码
  | Name  | Type        | Params | In sizes  | Out sizes
--------------------------------------------------------------
0 | net   | Sequential  | 132 K  | [10, 256] | [10, 512]
1 | net.0 | Linear      | 131 K  | [10, 256] | [10, 512]
2 | net.1 | BatchNorm1d | 1.0 K  | [10, 512] | [10, 512]
相关推荐
浪浪山_大橙子3 分钟前
使用Electron+Vue3开发Qwen3 2B桌面应用:从想法到实现的完整指南
前端·人工智能
亚马逊云开发者3 分钟前
【Agentic AI for Data系列】Kiro实战:DuckDB vs Spark技术选型全流程
人工智能
QT 小鲜肉4 分钟前
【孙子兵法之下篇】010. 孙子兵法·地形篇
人工智能·笔记·读书·孙子兵法
Jay20021114 分钟前
【机器学习】30 基于内容的过滤算法
人工智能·算法·机器学习
爱打代码的小林15 分钟前
python基础(pandas库)
服务器·python·pandas
极客BIM工作室16 分钟前
ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程
人工智能·机器学习
北京耐用通信17 分钟前
阀岛的“超级大脑”:耐达讯自动化网关让EtherNet/IP转DeviceNet“说同一种语言”
人工智能·物联网·网络协议·网络安全·自动化·信息与通信
shenzhenNBA17 分钟前
如何在python文件中使用日志功能?简单版本
java·前端·python·日志·log
泡泡茶壶_ovo28 分钟前
PixCLIP:通过任意粒度像素-文本对齐学习实现细粒度视觉语言理解
人工智能·计算机视觉·对比学习·imagecaptioning