PyTorch Lightning教程五:Debug调试

如果遇到了这样一个问题,当一次训练模型花了好几天,结果突然在验证或测试的时候崩掉了,这个时候其实是很奔溃的,主要还是由于没有提前知道哪些时候会出现什么问题,本节会引入Lightning的Debug方案

1.fast_dev_run参数

Trainer中的fast_dev_run参数通过你的训练器运行5批训练、验证、测试和预测数据,看看是否有任何错误,如下

python 复制代码
Trainer(fast_dev_run=True)

如果fast_dev_run设置为7,则表示训练7个batch每次

⚠️注意:这个参数将禁用tuner、checkpoint callbacks, early stopping callbacks, loggers 和 logger callbacks(如 LearningRateMonitor和DeviceStatsMonitor)。

2.减少epoch长度

有时,我们只需要使用训练、val、测试或预测数据的一小部分(或一组批次),来看看是否有错误。例如,可以使用20%的训练集和1%的验证集。

在像Imagenet这样的大型数据集上,这可以帮助我们更快地调试或测试一些东西,而不是等待一个完整的epoch。

复制代码
# 只使用10%的训练数据和1%的验证数据
trainer = Trainer(limit_train_batches=0.1, limit_val_batches=0.01)

# 使用10批次训练和5批次验证
trainer = Trainer(limit_train_batches=10, limit_val_batches=5)

3.运行一次完整性验证

Lightning在训练开始时有2个验证的步骤。这避免了在验证循环中陷入冗长的训练循环。

python 复制代码
trainer = Trainer(num_sanity_val_steps=2)

4.打印模型相关参数

每当调用.fit()函数时,训练器将打印LightningModule的权重摘要,例如

python 复制代码
trainer.fit(...)

则出现

复制代码
  | Name  | Type        | Params
----------------------------------
0 | net   | Sequential  | 132 K
1 | net.0 | Linear      | 131 K
2 | net.1 | BatchNorm1d | 1.0 K

需要将子模块添加到摘要中,添加一个ModelSummary,如下操作

python 复制代码
# 方法1.引入回调函数
from lightning.pytorch.callbacks import ModelSummary
trainer = Trainer(callbacks=[ModelSummary(max_depth=-1)])  # 回调函数ModelSummary
trainer.fit()
# 注:如果不打印,则可以运行 Trainer(enable_model_summary=False)


# 当然也可以下面这样子,直接打印
# 方法2.不调用fit
model = LitModel()
summary = ModelSummary(model, max_depth=-1)
print(summary)

4.所有中间层的输入输出

另一个调试工具是通过在LightningModule中设置example_input_array属性来显示所有层的中间输入和输出大小。

python 复制代码
class LitModel(LightningModule):
    def __init__(self, *args, **kwargs):
        self.example_input_array = torch.Tensor(32, 1, 28, 28)

当执行.fit()时,会打印如下

复制代码
  | Name  | Type        | Params | In sizes  | Out sizes
--------------------------------------------------------------
0 | net   | Sequential  | 132 K  | [10, 256] | [10, 512]
1 | net.0 | Linear      | 131 K  | [10, 256] | [10, 512]
2 | net.1 | BatchNorm1d | 1.0 K  | [10, 512] | [10, 512]
相关推荐
亚林瓜子几秒前
pyspark分组计数
python·spark·pyspark·分组统计
HyperAI超神经几秒前
【TVM教程】设备/目标交互
人工智能·深度学习·神经网络·microsoft·机器学习·交互·gpu算力
应用市场2 分钟前
#AI对话与AI绘画的底层原理:从概率预测到创意生成的完整解析
人工智能·ai作画
肾透侧视攻城狮2 分钟前
《解锁 PyTorch 张量:多维数据操作与 GPU 性能优化全解析》
人工智能·numpy·张量的索引和切片·张量形状变换·张量数学运算操作·张量的gpu加速·张量与 numpy 的互操作
Tadas-Gao4 分钟前
大模型幻觉治理新范式:SCA与[PAUSE]注入技术的深度解析与创新设计
人工智能·深度学习·机器学习·架构·大模型·llm
查无此人byebye4 分钟前
从零解读CLIP核心源码:PyTorch实现版逐行解析
人工智能·pytorch·python·深度学习·机器学习·自然语言处理·音视频
PKUMOD4 分钟前
论文导读 | 在长上下文及复杂任务中的递归式语言模型架构
人工智能·语言模型·架构
海绵宝宝de派小星5 分钟前
文本表示方法演进(词袋模型→Word2Vec→BERT)
人工智能·ai·bert·word2vec
chao_7895 分钟前
双设备全栈开发最佳实践[mac系统]
git·python·macos·docker·vue·全栈
AC赳赳老秦6 分钟前
等保2.0合规实践:DeepSeek辅助企业数据分类分级与自动化报告生成
大数据·人工智能·分类·数据挖掘·自动化·数据库架构·deepseek