Hive执行引擎的区别

执行引擎 Tez、Spark 和 MapReduce 都是用于在大数据处理中执行任务的框架或引擎,它们在性能、优化、适用场景等方面有一些区别。

  1. MapReduce:

    • MapReduce 是 Hadoop 最早引入的批处理计算模型,它将任务分成 Map 和 Reduce 两个阶段,适用于大规模离线数据处理。
    • MapReduce 的特点是适合对大量数据进行批量处理,但因为它的多阶段计算模型,可能导致高延迟。
  2. Tez:

    • Tez 是一个基于Hadoop YARN的数据处理引擎,旨在提高Hadoop集群上的任务执行性能。它允许更复杂的计算图,而不仅仅是 Map 和 Reduce 阶段。
    • Tez 的优点在于通过优化任务执行流程,减少了多阶段计算的开销,从而提高了任务执行的效率,减少了延迟。它特别适合于需要更低延迟和更高性能的任务。
  3. Spark:

    • Spark 是一个内存计算框架,支持批处理、交互式查询、流处理和机器学习等多种工作负载。它在内存中存储数据,因此速度较快。
    • Spark 的特点在于能够在内存中进行迭代计算,适用于迭代算法、机器学习等需要多次迭代的计算。另外,Spark 也支持流处理,适用于实时数据处理。

区别和比较:

  • 性能: Tez 和 Spark 在性能上通常优于传统的 MapReduce。Spark 利用内存计算和数据共享,提供更高的执行速度。Tez 通过优化执行流程来降低计算开销,提高任务执行效率。

  • 适用场景:

    • MapReduce 适合于离线、批处理的数据处理任务。
    • Tez 适用于需要更低延迟和更高性能的数据处理任务,特别是复杂的计算任务。
    • Spark 适用于多种场景,包括批处理、交互式查询、流处理、机器学习等。
  • 编程模型:

    • MapReduce 需要定义 Map 和 Reduce 函数,相对复杂。
    • Tez 和 Spark 提供更多的抽象,使得编程更加方便。
  • 数据共享:

    • Spark 具有数据共享和缓存的功能,适合迭代算法等需要多次访问同一数据集的任务。
    • Tez 也具有一定的数据共享功能,但相对不如 Spark。

综上所述,选择适当的执行引擎取决于具体的数据处理需求和性能要求。MapReduce适合传统大规模批处理,Tez 适合需要更低延迟的任务,Spark 则适用于多种工作负载。

相关推荐
派可数据BI可视化7 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
随心............12 小时前
yarn面试题
大数据·hive·spark
SirLancelot11 天前
StarRocks-基本介绍(一)基本概念、特点、适用场景
大数据·数据库·数据仓库·sql·数据分析·database·数据库架构
随心............1 天前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark
yumgpkpm2 天前
CMP (类ClouderaCDP7.3(404次编译) )华为鲲鹏Aarch64(ARM)信创环境 查询2100w行 hive 查询策略
数据库·数据仓库·hive·hadoop·flink·mapreduce·big data
CoookeCola2 天前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
想ai抽3 天前
深入starrocks-多列联合统计一致性探查与策略(YY一下)
java·数据库·数据仓库
starfalling10243 天前
【hive】一种高效增量表的实现
hive
D明明就是我3 天前
Hive 拉链表
数据仓库·hive·hadoop
嘉禾望岗5033 天前
hive join优化和数据倾斜处理
数据仓库·hive·hadoop