回归决策树模拟sin函数

python 复制代码
# -*-coding:utf-8-*-
import numpy as np
from sklearn import tree
import matplotlib.pyplot as plt

plt.switch_backend("TkAgg")
# 创建了一个随机数生成器对象 rng
rng=np.random.RandomState(1)
print("rng",rng)
#5*rng.rand(80,1)生成一个80行、1列的数组,数组中的每个元素都是从0到5之间的随机数。然后,np.sort函数对这个数组进行排序,axis=0表示按行(也就是每一列)排序。
#axis=0,数组只有行,没有列
X=np.sort(5*rng.rand(80,1),axis=0)

#ravel()把二维数组变为一位数组
y=np.sin(X).ravel()



#选取0,5,10,15,20....,让这些下标数字加上噪声
y[::5]+=3*(0.5-rng.rand(16))

regr_1=tree.DecisionTreeRegressor(max_depth=2)
regr_2=tree.DecisionTreeRegressor(max_depth=5)
clf1=regr_1.fit(X,y)
clf2=regr_2.fit(X,y)

#转为二维数组
X_test=np.reshape( np.arange(0.0,5.0,0.01),(-1,1) )
# X_test=np.arrange(0.0,5.0,0.01)[:,np.newaxis]

y_1=regr_1.predict(X_test)
y_2=regr_2.predict(X_test)


plt.figure()
plt.scatter(X,y,s=20,edgecolors="black",c="darkorange",label="data")
plt.plot(X_test,y_1,color="cornflowerblue",label="max_depth=2",linewidth=2)
plt.plot(X_test,y_2,color="yellowgreen",label="max_depth=5",linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regreesion")
plt.legend()
plt.show()
相关推荐
运营秋秋1 小时前
数据分析:超越阅读量,读懂数据背后的“用户语言”
数据挖掘·数据分析·运营
老歌老听老掉牙5 小时前
回归模型评估的双重镜:决定系数与平均绝对误差
人工智能·数据挖掘·回归
飞Link12 小时前
预训练阶段中的模型自我提升、通用模型蒸馏和数据增强中的数据重构和非LLM驱动的数据增强
算法·重构·数据挖掘
实战项目12 小时前
K-nearest算法在分类问题中的优化
算法·分类·数据挖掘
ZCXZ12385296a13 小时前
YOLOv11创新改进系列_CSP与PMSFA注意力机制融合_表面损伤严重程度检测与分类
yolo·分类·数据挖掘
张小凡vip13 小时前
数据挖掘(四) -----JupyterHub on k8s安装
人工智能·数据挖掘·kubernetes
飞Link14 小时前
微调阶段中的模型自我提升、通用模型蒸馏和数据扩充
人工智能·算法·数据挖掘
ACERT33314 小时前
9.吴恩达机器学习——决策树
人工智能·决策树·机器学习
顾道长生'14 小时前
(NIPS-2025)自强制:弥合自回归视频扩散中的训练–测试差距
数据挖掘·回归·音视频
spssau14 小时前
实证分析 | 影响关系研究如何选择回归模型?64种回归模型分类汇总
人工智能·数据挖掘·回归