回归决策树模拟sin函数

python 复制代码
# -*-coding:utf-8-*-
import numpy as np
from sklearn import tree
import matplotlib.pyplot as plt

plt.switch_backend("TkAgg")
# 创建了一个随机数生成器对象 rng
rng=np.random.RandomState(1)
print("rng",rng)
#5*rng.rand(80,1)生成一个80行、1列的数组,数组中的每个元素都是从0到5之间的随机数。然后,np.sort函数对这个数组进行排序,axis=0表示按行(也就是每一列)排序。
#axis=0,数组只有行,没有列
X=np.sort(5*rng.rand(80,1),axis=0)

#ravel()把二维数组变为一位数组
y=np.sin(X).ravel()



#选取0,5,10,15,20....,让这些下标数字加上噪声
y[::5]+=3*(0.5-rng.rand(16))

regr_1=tree.DecisionTreeRegressor(max_depth=2)
regr_2=tree.DecisionTreeRegressor(max_depth=5)
clf1=regr_1.fit(X,y)
clf2=regr_2.fit(X,y)

#转为二维数组
X_test=np.reshape( np.arange(0.0,5.0,0.01),(-1,1) )
# X_test=np.arrange(0.0,5.0,0.01)[:,np.newaxis]

y_1=regr_1.predict(X_test)
y_2=regr_2.predict(X_test)


plt.figure()
plt.scatter(X,y,s=20,edgecolors="black",c="darkorange",label="data")
plt.plot(X_test,y_1,color="cornflowerblue",label="max_depth=2",linewidth=2)
plt.plot(X_test,y_2,color="yellowgreen",label="max_depth=5",linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regreesion")
plt.legend()
plt.show()
相关推荐
甄心爱学习2 小时前
数据挖掘11-分类的高级方法
人工智能·算法·分类·数据挖掘
qq_4369621817 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
CV实验室1 天前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类
xuehaikj1 天前
基于RetinaNet的建筑设计师风格识别与分类研究_1
人工智能·数据挖掘
迦蓝叶1 天前
RDF 与 RDFS:知识图谱推理的基石
java·人工智能·数据挖掘·知识图谱·语义网·rdf·rdfs
xuehaikj1 天前
苹果质量检测与分类 - YOLO13结合RFCAConv实现
人工智能·数据挖掘
xuehaikj1 天前
芦笋嫩茎形态分类与识别_YOLO11-C3k2-MambaOut-SFSC模型实现_1
人工智能·数据挖掘
qunshankeji1 天前
YOLOv8-SOEP-RFPN-MFM水果智能分类与检测模型实现
yolo·分类·数据挖掘
沧澜sincerely1 天前
数据挖掘概述
人工智能·数据挖掘
Learn Beyond Limits2 天前
Regression vs. Classification|回归vs分类
人工智能·python·算法·ai·分类·数据挖掘·回归