回归决策树模拟sin函数

python 复制代码
# -*-coding:utf-8-*-
import numpy as np
from sklearn import tree
import matplotlib.pyplot as plt

plt.switch_backend("TkAgg")
# 创建了一个随机数生成器对象 rng
rng=np.random.RandomState(1)
print("rng",rng)
#5*rng.rand(80,1)生成一个80行、1列的数组,数组中的每个元素都是从0到5之间的随机数。然后,np.sort函数对这个数组进行排序,axis=0表示按行(也就是每一列)排序。
#axis=0,数组只有行,没有列
X=np.sort(5*rng.rand(80,1),axis=0)

#ravel()把二维数组变为一位数组
y=np.sin(X).ravel()



#选取0,5,10,15,20....,让这些下标数字加上噪声
y[::5]+=3*(0.5-rng.rand(16))

regr_1=tree.DecisionTreeRegressor(max_depth=2)
regr_2=tree.DecisionTreeRegressor(max_depth=5)
clf1=regr_1.fit(X,y)
clf2=regr_2.fit(X,y)

#转为二维数组
X_test=np.reshape( np.arange(0.0,5.0,0.01),(-1,1) )
# X_test=np.arrange(0.0,5.0,0.01)[:,np.newaxis]

y_1=regr_1.predict(X_test)
y_2=regr_2.predict(X_test)


plt.figure()
plt.scatter(X,y,s=20,edgecolors="black",c="darkorange",label="data")
plt.plot(X_test,y_1,color="cornflowerblue",label="max_depth=2",linewidth=2)
plt.plot(X_test,y_2,color="yellowgreen",label="max_depth=5",linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regreesion")
plt.legend()
plt.show()
相关推荐
Gofarlic_oms117 小时前
集中式 vs 分布式许可:跨地域企业的管控架构选择
大数据·运维·人工智能·分布式·架构·数据挖掘·需求分析
core51219 小时前
决策树 (Decision Tree):像“猜猜看”游戏一样的AI算法
人工智能·算法·决策树
Maxwell_li120 小时前
新冠检测例子学习查准率和召回率
学习·机器学习·数据分析·回归·numpy·pandas
自不量力的A同学20 小时前
阶跃星辰(StepFun)已于近期正式发布了开源图像生成模型 NextStep
人工智能·数据挖掘·回归
2501_941333101 天前
基于YOLO11-CA-HSFPN的人体姿态识别与姿势分类改进方法详解
人工智能·分类·数据挖掘
Loacnasfhia91 天前
珊瑚形态识别与分类:基于YOLOv8-EfficientHead的14种珊瑚生长形态自动检测系统
yolo·分类·数据挖掘
qq_430855881 天前
线代第三章向量第一节:n维向量及其运算
python·决策树·机器学习
2301_792185882 天前
基于软件工程的结构化分析实验
人工智能·数据挖掘·软件工程
一瞬祈望2 天前
ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
人工智能·python·神经网络·数据挖掘
顽强卖力2 天前
第一章:什么是数据分析?
数据挖掘·数据分析