回归决策树模拟sin函数

python 复制代码
# -*-coding:utf-8-*-
import numpy as np
from sklearn import tree
import matplotlib.pyplot as plt

plt.switch_backend("TkAgg")
# 创建了一个随机数生成器对象 rng
rng=np.random.RandomState(1)
print("rng",rng)
#5*rng.rand(80,1)生成一个80行、1列的数组,数组中的每个元素都是从0到5之间的随机数。然后,np.sort函数对这个数组进行排序,axis=0表示按行(也就是每一列)排序。
#axis=0,数组只有行,没有列
X=np.sort(5*rng.rand(80,1),axis=0)

#ravel()把二维数组变为一位数组
y=np.sin(X).ravel()



#选取0,5,10,15,20....,让这些下标数字加上噪声
y[::5]+=3*(0.5-rng.rand(16))

regr_1=tree.DecisionTreeRegressor(max_depth=2)
regr_2=tree.DecisionTreeRegressor(max_depth=5)
clf1=regr_1.fit(X,y)
clf2=regr_2.fit(X,y)

#转为二维数组
X_test=np.reshape( np.arange(0.0,5.0,0.01),(-1,1) )
# X_test=np.arrange(0.0,5.0,0.01)[:,np.newaxis]

y_1=regr_1.predict(X_test)
y_2=regr_2.predict(X_test)


plt.figure()
plt.scatter(X,y,s=20,edgecolors="black",c="darkorange",label="data")
plt.plot(X_test,y_1,color="cornflowerblue",label="max_depth=2",linewidth=2)
plt.plot(X_test,y_2,color="yellowgreen",label="max_depth=5",linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regreesion")
plt.legend()
plt.show()
相关推荐
2201_7530548919 小时前
应用回归分析,R语言,多元线性回归总结(中)
数据挖掘·回归·线性回归
2201_753054892 天前
应用回归分析,R语言,多元线性回归总结(下)
回归·r语言·线性回归
北温凉2 天前
【论文阅读】基于注意力机制的冥想脑电分类识别研究(2025)
论文阅读·分类·数据挖掘
在猴站学算法2 天前
机器学习(西瓜书) 第四章 决策树
人工智能·决策树·机器学习
Nightmare0042 天前
决策树学习
学习·算法·决策树
cwn_3 天前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
音程3 天前
什么是Jaccard 相似度(Jaccard Similarity)
深度学习·数据挖掘
乙真仙人3 天前
AI Agents时代,数据分析将彻底被颠覆
人工智能·数据挖掘·数据分析
Leo.yuan3 天前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
李昊哲小课3 天前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas