pycharm——树状图

复制代码
from pyecharts import options as opts
from pyecharts.charts import Tree


data = [
    {
        "children": [
            {"name": "计算机"},
            {
                "children": [{"children": [{"name": "主机"}], "name": "硬盘"}, {"name": "鼠标和键盘"}],
                "name": "硬件",
            },
            {
                "children": [
                    {"children": [{"name": "操作系统"}, {"name": "数据结构"}], "name": "组成原理"},
                    {"name": "基础"},
                ],
                "name": "软件",
            },
        ],
        "name": "数学",
    }
]
c = (
    Tree()
    .add("", data)
    .set_global_opts(title_opts=opts.TitleOpts(title="Tree-基本示例"))
    .render("tree_base.html")
)
复制代码
import json

from pyecharts import options as opts
from pyecharts.charts import Tree

with open("flare.json", "r", encoding="utf-8") as f:
    j = json.load(f)
c = (
    Tree()
    .add("", [j], collapse_interval=2, layout="radial")
    .set_global_opts(title_opts=opts.TitleOpts(title="Tree-Layout"))
    .render("tree_layout.html")
)

flare.json文件

复制代码
 {
    "name": "My Library",
    "children": [
        {
            "name": "Book",
            "children": [
                {"name": "Title", "value": "The Great Gatsby"},
                {"name": "Author", "value": "F. Scott Fitzgerald"},
                {"name": "Publication Date", "value": "1925-04-10"}
            ]
        },
        {
            "name": "Library",
            "children": [
                {"name": "Name", "value": "Central Library"},
                {"name": "Location", "value": "New York"}
            ]
        },
        {
            "name": "Characters",
            "children": [
                {"name": "Jay Gatsby", "value": "Wealthy Gambler"},
                {"name": "Nick Carraway", "value": "Narrator"},
                {"name": "Daisy Buchanan", "value": "Socialite"}
            ]
        },
        {
          "name": "competer",
          "children": [
            {"name": "数据结构","value": "50"},
            {"name": "数据库原理","value": "60"},
            {"name": "计算机组成网络","value": "40"}
          ]
         }
    ]
}
相关推荐
知乎的哥廷根数学学派3 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词3 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
人工干智能3 小时前
OpenAI Assistants API 中 client.beta.threads.messages.create方法,兼谈一星*和两星**解包
python·llm
databook3 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
python·数据分析·数据可视化
阿部多瑞 ABU4 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
acanab4 小时前
VScode python插件
ide·vscode·python
极海拾贝5 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派5 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
WangYaolove13145 小时前
Python基于大数据的电影市场预测分析(源码+文档)
python·django·毕业设计·源码
知乎的哥廷根数学学派5 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习