LangChain与大模型的学习

这里写目录标题

问题记录

1、库的版本问题

powershell 复制代码
openai.error.APIConnectionError: Error communicating with OpenAI: HTTPSConnectionPool(host='api.openai.com', port=443): Max retries exceeded with url: /v1/completions (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:1129)')))

解决办法

powershell 复制代码
降低urllib3的版本 <= 1.25.11

pip install urllib3==1.25.11

实例记录

1、公司名生成

python 复制代码
# 来源于LangChain中文网
#-*- coding:utf-8 -*-
# 实例1:构建一个基于公司产品生成公司名称的服务
import os
os.environ["OPENAI_API_KEY"] = "......"
from langchain.llms import OpenAI

llm = OpenAI(temperature=0.9)
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))

# 输出:Rainbow Rascals Socks.

我的第一个调用实例,感觉还是很神奇的

"temperature" : OpenAI的API有效载荷中,"temperature"选项是一个控制语言模型输出的随机性或创造性的参数。当使用语言模型生成文本时,它通常会输出根据输入和先前训练数据确定为最可能的单词或词序列。然而,增加输出的随机性可以帮助模型创建更具创意和有趣的输出。"temperature"选项实际上控制着随机性的程度。将温度设置为较低的值将导致输出更可预测和重复,而较高的温度会导致更多种类和不可预测的输出。例如,将温度设置为0.5将导致较保守的输出,而温度为1将创建更富创意和自发的输出。需要注意的是,理想的温度值将取决于具体的任务和上下文,因此可能需要一些实验来找到适合您需要的正确值。

2 提示模板的使用

python 复制代码
# 实例2:提示模板的使用
prompt = PromptTemplate(
    input_variables=["product"],
    template="What is a good name for a company that makes {product}?",
)
print(prompt.format(product="colorful socks"))

# 输出:What is a good name for a company that makes colorful socks?

3LLM Chain

python 复制代码
# 实例3:在多步骤的工作流中组合 LLM 和提示
import os
os.environ["OPENAI_API_KEY"] = "......"
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

llm = OpenAI(temperature=0.9)

prompt = PromptTemplate(
    input_variables=["product"],
    template="What is a good name for a company that makes {product}?",
)

chain = LLMChain(llm=llm, prompt=prompt)

print(chain.run("colorful socks"))

# 输出:Sock Pop!

参考资料

1、LangChain中文网

2、python 关于Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:1131)')

相关推荐
shut up7 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Larry_Yanan7 小时前
QML学习笔记(三十四)QML的GroupBox、RadioButton
c++·笔记·qt·学习·ui
im_AMBER7 小时前
杂记 14
前端·笔记·学习·web
liliangcsdn7 小时前
如何基于ElasticsearchRetriever构建RAG系统
大数据·elasticsearch·langchain
东方佑8 小时前
基于FastAPI与LangChain的Excel智能数据分析API开发实践
langchain·excel·fastapi
立志成为大牛的小牛8 小时前
数据结构——十七、线索二叉树找前驱与后继(王道408)
数据结构·笔记·学习·程序人生·考研·算法
张永清-老清9 小时前
每周读书与学习->初识JMeter 元件(五)
学习·jmeter·性能调优·jmeter性能测试·性能分析·干货分享·每周读书与学习
低音钢琴9 小时前
【从零开始构建性能测试体系-02】 Apache JMeter 取样器指南:从入门到精通
学习·jmeter·apache
im_AMBER9 小时前
Web 开发 27
前端·javascript·笔记·后端·学习·web
cimeo9 小时前
【C 学习】12.2-函数补充
学习·c#