Pytorch Tutorial【Chapter 1. Basic operation of tensor】

Pytorch Tutorial

文章目录

  • [Pytorch Tutorial](#Pytorch Tutorial)
    • [Chapter 1. Basic operation of tensor](#Chapter 1. Basic operation of tensor)
    • Reference

Chapter 1. Basic operation of tensor

本节介绍有关张量Tensor的基本操作

Tensor相当于numpy中的ndarrays

  • 创建空Tensor和全零Tensortorch.zeros(d0,d1)类似于numpy.zeros(size)torch.empty(d0,d1)类似于numpy.empty(size)
python 复制代码
x1 = torch.empty(2,2)
x2 = np.empty((2,2))
x2 = torch.zeros(2,2)
x4 = np.zeros((2,2))
print(x1)
print(x2)
print(x3)
print(x4)
python 复制代码
tensor([[ 1.4013e-45,  0.0000e+00],
        [-4.2944e+22,  6.7683e-43]])
tensor([[0., 0.],
        [0., 0.]])
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
[[0. 0.]
 [0. 0.]]
  • 创建随机Tensortorch.rand(d0,d1)相当于numpy.random.rand(d0,d1)rand表示随机变量服从uniform distribution,torch.randn(d0,d1)相当于numpy.random.randn(d0,d1)randn表示随机变量服从 normal distribution
python 复制代码
y1 = torch.rand(2,2)
y2 = np.random.rand(2,2)
y3 = np.random.random((2,2))
print(y1)
print(y2)
print(y3)
python 复制代码
tensor([[0.4407, 0.1455],
        [0.0214, 0.6033]])
[[0.91633254 0.74086994]
 [0.11203967 0.78700098]]
[[0.89562162 0.63706194]
 [0.07474063 0.94183217]]
  • 手动创建Tensortorch.tensor()类似于numpy.array()
python 复制代码
z1 = torch.tensor(np.random.rand(2,2))
z2 = np.array([2,2])
print(z1)
print(z2)
python 复制代码
tensor([[0.8592, 0.2296],
        [0.3234, 0.0014]], dtype=torch.float64)
[2 2]
  • 创建全一Tensortorch.ones(d0,d1)类似于numpy.ones(size)
python 复制代码
c1 = torch.ones(2,2)
c2 = np.ones((2,2))
print(c1)
print(c2)
python 复制代码
tensor([[1., 1.],
        [1., 1.]])
[[1. 1.]
 [1. 1.]]
  • 创建独热码Tensortorch.eye(d0,d1)类似于np.eye(d0,d1)
python 复制代码
c1 = torch.ones(2,2)
c2 = np.ones((2,2))
print(c1)
print(c2)
python 复制代码
tensor([[1., 1.],
        [1., 1.]])
[[1. 1.]
 [1. 1.]]
  • 获得Tensorsizetensor.size()返回tensor的shape
python 复制代码
r = torch.eye(2,2)
print(r.size())
python 复制代码
torch.Size([2, 2])
  • 加法,使用+numpy类似
python 复制代码
a1 = torch.eye(2,2)
a2 = torch.rand(2,2)
print(a1+a2)
b1 = np.eye(2,2)
b2 = np.random.rand(2,2)
print(b1+b2)
python 复制代码
tensor([[1.1682, 0.4159],
        [0.5044, 1.4019]])
[[1.7929664  0.96477472]
 [0.3380899  1.35091993]]
  • 加法,使用torch.add()numpy.add()类似
python 复制代码
a1 = torch.eye(2,2)
a2 = torch.rand(2,2)
print(torch.add(a1,a2))
b1 = np.eye(2,2)
b2 = np.random.rand(2,2)
print(np.add(b1,b2))
python 复制代码
tensor([[1.5244, 0.8070],
        [0.2586, 1.1021]])
[[1.52558655 0.85622143]
 [0.92030175 1.18823413]]
  • 加法,tensor.add(a,b,out=result),将加法的结果保存在预先开辟好的result张量中
python 复制代码
result = torch.empty(3,3)
torch.add(a1,a2, out=result)
print(result)
result = torch.add(a1,a2)
print(result)
python 复制代码
tensor([[1.8654, 0.8892, 0.9849],
        [0.4269, 1.3964, 0.7995],
        [0.2235, 0.3375, 1.3471]])
tensor([[1.8654, 0.8892, 0.9849],
        [0.4269, 1.3964, 0.7995],
        [0.2235, 0.3375, 1.3471]])
  • 加法,in-place原地替换的做法tensor.add_(),注:所有的in-place的做法都有一个_
python 复制代码
a1 = torch.eye(3,3)
a2 = torch.eye(3,3)
a1.add_(a2)
print(a1)
python 复制代码
tensor([[2., 0., 0.],
        [0., 2., 0.],
        [0., 0., 2.]])
  • tensor改变形状,tensor.reshape(size)ndarrays.reshape(size)类似,但tensor.reshape(size)不是in-place的做法,ndarryas.reshape(size)也不是in-place的做法
python 复制代码
a = torch.eye(4,4)
b = a.reshape(2,8)
print(a)
print(b)

c = np.eye(4,4)
d = c.reshape(2,8)
print(c)
print(d)
python 复制代码
tensor([[1., 0., 0., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.]])
tensor([[1., 0., 0., 0., 0., 1., 0., 0.],
        [0., 0., 1., 0., 0., 0., 0., 1.]])
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]
[[1. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 1.]]
  • 使用tensor.item()来获得 scalar tensor的值
python 复制代码
a = torch.randn(3,3)
print(a)
print(a[0,0])
print(a[0,0].item())
python 复制代码
tensor([[ 0.1261, -0.7185,  0.3167],
        [ 0.7252,  0.9447,  1.6690],
        [ 0.4250, -0.3057,  0.7201]])
tensor(0.1261)
0.126137375831604

Reference

参考教程

相关推荐
不辉放弃14 分钟前
零基础讲解pandas
开发语言·python
Chaos_Wang_21 分钟前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
databook24 分钟前
线性判别分析(LDA):降维与分类的完美结合
python·机器学习·scikit-learn
慕丹26 分钟前
虫洞数观系列三 | 数据分析全链路实践:Pandas清洗统计 + Navicat可视化呈现
python·mysql·数据挖掘·数据分析·pandas
新智元26 分钟前
美国 CS 专业卷上天,满分学霸惨遭藤校全拒!父亲大受震撼引爆热议
人工智能·openai
新智元29 分钟前
美国奥数题撕碎 AI 数学神话,顶级模型现场翻车!最高得分 5%,DeepSeek 唯一逆袭
人工智能·openai
ZHW_AI课题组38 分钟前
调用阿里云API实现运营商实名认证
python·阿里云·云计算·api
Baihai_IDP39 分钟前
「DeepSeek-V3 技术解析」:无辅助损失函数的负载均衡
人工智能·llm·deepseek
闲人编程40 分钟前
图像插值算法(最近邻/双线性/立方卷积)
python·opencv·图像识别
硅谷秋水1 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理