elasticSearch常见的面试题

常见的面试问题

描述使用场景

es集群架构3个节点,根据不同的服务创建不同的索引,根据日期和环境,平均每天递增60*2,大约60Gb的数据。

调优技巧

原文参考:干货 | BAT等一线大厂 Elasticsearch面试题解读 - 掘金

设计阶段的调优

  1. 根据业务增长的需求,采取日期模版创建索引,通过roll over API实现滚动索引

定义条件,生成新的索引,但都指向一个别名

https://juejin.cn/post/6959744054905012231

  1. 根据别名对索引进行管理

  2. 凌晨对索引进行force_merge操作,释放空间

合并Lucene索引在每个分片中保存的分段数,强制合并减少分片中的分段数量

https://blog.csdn.net/weixin_43820556/article/details/122986027

  1. 冷热分离机制,热数据放在SSD,冷数据定期shrink操作,缩减存储

删除副本,只读索引,减少主分片的数量

https://blog.csdn.net/UbuntuTouch/article/details/109004225

  1. 使用curator进行索引的生命周期管理

对索引和快照进行管理,配置规则,定时任务调用

https://cloud.tencent.com/developer/article/1382110

  1. 仅针对需要分词的字段,选用合适的分词器

  2. Mapping阶段充分结合各个字段的属性,是否要检索、存储

写入调优

  1. 写入前refresh_interval=-1

默认情况下索引的refresh_interval为1秒,这意味着数据写1秒后就可以被搜索到,每次索引的 refresh 会产生一个新的 lucene 段,这会导致频繁的 segment merge 行为,如果你不需要这么高的搜索实时性,应该降低索引refresh 周期

  1. 采用bulk批量写入

  2. 使用自动生成的id

写入 doc 时如果是外部指定了 id,es 会先尝试读取原来doc的版本号, 判断是否需要更新,使用自动生成 doc id 可以避免这个环节

查询调优

  1. 禁用批量terms(分页)
  2. 数据量大时,先基于时间范围检索
  3. 充分利用倒排索引机制,keyword查询
  4. 合理的路由机制

索引数据多的调优和部署

动态索引

基于模板+时间+rollover api 滚动创建索引

存储层面

冷热数据分离存储,冷数据force_merge+shrink压缩

部署层面

合理的前期规划,动态增加节点缓解集群压力

master选举机制

基本前提

  1. 候选主节点才能成为主节点
  2. 最小主节点数防止脑裂
选举流程

索引文档流程

文档获取分片

文档id计算目标分片id

Java 复制代码
shard = hash(_routing) % (num_of_primary_shards)
相关推荐
珠海西格电力4 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
LJ97951114 小时前
AI如何重构媒介宣发:从资源博弈到智能匹配的技术跃迁
大数据
长路 ㅤ   5 小时前
ES索引切分方案4:索引+别名 应用层自己维护:时间序列索引
elasticsearch·索引模板·时间序列索引·别名系统·大数据优化
数据皮皮侠AI5 小时前
上市公司股票名称相似度(1990-2025)
大数据·人工智能·笔记·区块链·能源·1024程序员节
Zoey的笔记本6 小时前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
2501_933670796 小时前
大数据与财务管理专业就业岗位方向
大数据
小龙7 小时前
【Git 报错解决】本地分支与远程分支名称/提交历史不匹配
大数据·git·elasticsearch·github
Deepoch7 小时前
Deepoc具身模型:破解居家机器人“需求理解”难题
大数据·人工智能·机器人·具身模型·deepoc
代码方舟7 小时前
Java企业级实战:对接天远名下车辆数量查询API构建自动化风控中台
java·大数据·开发语言·自动化
roman_日积跬步-终至千里7 小时前
【大数据架构-数据中台(2)】数据中台建设与架构:从战略到落地的完整方法论
大数据·架构