无脑入门pytorch系列(二)—— torch.mean

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

目录

官方定义

顾名思义,torch.mean返回输入张量中所有元素的平均值:

复制代码
def mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor:

上述的源码的定义,看起来参数十分多,但实际只需要记住下面几个参数:

  • input,输出是一个张量(tensor),注意如果不是tensor可以通过torch.tensor转换为tensor
  • dim,取平均值的维度,默认值是对tensor里的所有元素取平均值
  • keepdim,即保留张量的维度,因为取平均值后肯定是降维的,但是keepdim=True可以使得输出张量的维度与输入张量保持一致

官方的文档如下,torch.mean

demo

看下面一个例子:

python 复制代码
matrix = [[1, 2, 3],
          [4, 5, 6],
          [7, 8, 9]]

tensor = torch.tensor(matrix)
print(tensor)

输出的结果:

直接求mean:

复制代码
torch.mean(tensor)

出现错误:RuntimeError: mean(): could not infer output dtype. Input dtype must be either a floating point or complex dtype. Got: Long

意思是mean(),只能接受浮点数或复数类型的张量作为输入,所以先将tensor转化为float:

复制代码
tensor = tensor.float()

不配置任何参数

直接使用torch.mean():

复制代码
torch.mean(tensor)

输出的结果正好是1+2+...+9的平均值是5,所以如果不设置任何参数,那么默认取各个维度的平均值

设置按维度求平均

维度0:

复制代码
torch.mean(tensor, dim=0)

可以理解为矩阵按求平均值。

维度0:

复制代码
torch.mean(tensor, dim=0)

可以理解为矩阵按求平均值。

设置keepdim=True

复制代码
torch.mean(tensor, dim=0, keepdim=True)

其实就是在torch.mean(tensor, dim=0)的基础上,输出的一位张量上加上一对[]从而变为二维张量。

因为之前是按列求和,所以最后压缩为一行,然后补充行。

复制代码
torch.mean(tensor, dim=1, keepdim=True)

而dim=1是按行计算平均值,最后压缩的是列。

总结

torch.mean是个比较简单的函数,但是需要明白以下两点:

  • 第二个参数dim,决定了按哪个维度进行计算
  • 第三个参数keepdim,可以将输出张量的维度与输入张量保持一致
相关推荐
星尘安全13 小时前
研究人员发现严重 AI 漏洞,Meta、英伟达及微软推理框架面临风险
人工智能·microsoft·网络安全·程序员必看
共绩算力13 小时前
【共绩 AI 小课堂】Class 5 Transformer架构深度解析:从《Attention Is All You Need》论文到现代大模型
人工智能·架构·transformer·共绩算力
极客BIM工作室13 小时前
VideoCAD:大规模CAD UI交互与3D推理视频数据集,开启智能CAD建模新范式
人工智能·机器学习
帮帮志13 小时前
01.【AI大模型对话】通过简化大语言模型(LLM)技术来实现对话
人工智能·ai·语言模型·大模型·智能
蒋星熠13 小时前
常见反爬策略与破解反爬方法:爬虫工程师的攻防实战指南
开发语言·人工智能·爬虫·python·网络安全·网络爬虫
陈橘又青13 小时前
CANN在智能安防场景中的落地实践:释放硬件潜能,简化AI开发
人工智能·网络协议·学习·ai·编辑器
是店小二呀13 小时前
在家搭个私人影院?LibreTV+cpolar,随时随地看片自由
开发语言·人工智能
飞梦工作室13 小时前
突破 pandas 瓶颈:实时读写 Excel 与超透视汇总函数的双维解决方案
python·excel·pandas
爱看科技13 小时前
智能眼镜AR领航XR市场增长浪潮,三星/微美全息布局竞速引领AI消费新势力!
人工智能·ar·xr
这张生成的图像能检测吗14 小时前
(论文速读)多任务深度学习框架下基于Lamb波的多损伤数据集构建与量化算法
人工智能·深度学习·算法·数据集·结构健康监测